| 研究生: |
侯建安 Hou, Jian-An |
|---|---|
| 論文名稱: |
Ku 頻段發射器模組與可抑制鏡頻之次諧波混頻器單石微波積體電路之研製 The Fabrication of the Ku Band Transmitter Module and the MMIC Sub-Harmonically Image Rejection Mixer |
| 指導教授: |
王永和
Wang, Yeong-Her 洪茂峰 Houng, Mau-Phon |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 79 |
| 中文關鍵詞: | 鏡頻拒斥 、主動濾波器 、昇頻器 、發射器模組 、次諧波電阻式混頻器 |
| 外文關鍵詞: | sub-harmonically resistive mixer, transmitter module, up-converter |
| 相關次數: | 點閱:173 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
中文摘要
論文第一部分以RO4003 基板,實現一個Ku 頻段的小型化發射器模組。發射器模組包含昇頻器和功率放大器模組兩部分;在昇頻器方面,由2.4GHz 中頻放大器、5.8GHz 本地震盪源緩衝放大器、單端1/2 次諧波電阻式混頻器、髮夾式濾波器組合而成;量測結果顯示,在14GHz 時,昇頻器轉換增益為1.6dB、P1dB增益壓縮點為-6.3dBm;在功率放大器模組方面,由四個單級放大器組合而成;量測結果顯示,在14GHz 時,功率放大器模組小訊號增益為31.1dB、輸入返回損耗為10.2dB、輸出返回損耗為9.7dB、P1dB 增益壓縮點為24.2dBm、PAE 為25.6%;發射器模組系統透過Housing 與DC 控制PCB 組裝完成,並進行整測﹔整個系統由外部供應單一電壓源,操作在10 伏特時,電流小於0.5 安培,在14GHz,
轉換增益為33.6dB、P1dB 增益壓縮點為23.9dBm。
論文第二部分實現了一個可抑制鏡頻干擾的單晶微波積體電路次諧波混頻器。在設計中,我们在次諧波混頻器前端,加上一個主動濾波器來消除鏡頻干擾並且同時達到高隔離度和小型積體化目的。由量測結果顯示,操作在14GHz 時,其轉換損失為17dB,鏡頻拒斥能力則可以達到30dB。
IAbstract
The first part of the thesis is the development of a miniaturized transmitter module with RO4003 board for Ku band applications. It includes an up-converter and a power amplifier module .The up-converter is composed of the 2.4GHz IF amplifier, 5.8GHz LO buffer amplifier, single-end 1/2 sub-harmonically resistive mixer and hairpin BPF. The measured results of the up-converter show that the conversion gain is 1.6dB and output P1dB is -6.3dBm at 14GHz. The power amplifier module is composed of the four one-stage amplifiers. The measured results of the power amplifier module show that the small signal gain, input return loss, output return loss,output P-1dB and PAE are 31.1dB, 10.2dB, 9.7dB, 24.2dBm and 25.6% at 14GHz,
respectively. Finally, the transmitter system is also assembled with a voltage control PCB and power modules in the housing with one power supply only. At 10 V bias, the total current is lower than 0.5 Amp. The measured conversion gain is 33.6dB and P-1dB is 23.9dBm at 14GHz.
The second part of the thesis is the demonstration of a MMIC sub-harmonically mixer with high image rejection. The mixer was fabricated on a 4 mils substrate using the GCT 2.0µm HBT process. An active filter in front of the mixer to cancel the image interference is used to achieve the goal of higher isolation and integrated circuit to miniaturize the chip dimension simultaneously. The measured results show that the conversion loss is 17dB and the image rejection is as high as 30dB at 14GHz.
[1] G. Gonzalez, “Microwave Transistor Amplifiers Analysis and Design”, Prentice
Hall, Inc., New Jersey, 1996.
[2] B. Razavi, “RF MICROELECTRONICS ” , Prentice Hall, Inc., 1997.
[3] S. C. Cripps, “ RF Power Amplifier for Wireless Communications, ” Artech
House, Inc., 1999.
[4] A. Raghavan. H. Deukhyoun, M. Moonkyun, A. Sutono, L. Kyutae, and J.
Laskar, “A 2.2-V operation, 2.4-GHz single-chip GaAs MMIC transceiver for
wireless applications,” 2002 IEEE MTT-S International Microwave Symposium
Digest, Vol. 2, 2002, pp. 1019 –1022.
[5] T.Yoshimasu , M.Akagi , N.Tanba and S.Hara, ”An HBT MMIC Power
Amplifier with an Integrated Diode Linearizer for Low-Voltage Portable Phone
Applications”, IEEE Journal of Solid-State Circuits, Vol. 33, NO.9,
PP.1290-1296,1998.
[6] Bemkopf, P, and Tajima, Y.: “A monolithic Ka-band sub-harmonically pumped
frequency converter”, Proceedings of IEEE Microwave and Millimeter Wave
Monolithic Circuit Symposium, Boston, 1991, pp. 43-46
[7] J.L. Fikart,“Outdoor units for Ka/Ku-band satellite interactive
terminals,”Microwave Symposium Digest, 2001 IEEE MTT-S International
vol. 2, 20-25 May, 2001 pp. 1141 - 1144.
[8] A. R. Barnes, “A comparison of W- band monolithic resistive mixer
architectures”, in IEEE MTT- S Digest, Vol.3, pp1867- 1870, 2002.
[9] C.A. Zelley, “A 60 GHz integrated sub - harmonic receiver MMIC ”, IEEE GaAs
IC Digest- S, pp 175- 178, 2000.
[10] A. R. Barnes, “A comparison of W- band monolithic resistive mixer
architectures”, IEEE MTT- S Digest, Vol.3, pp1867- 1870, 2002.
[11] Imanishi, K.; Iwai, T.; Joshin, K.; Ohara, S.; Yamada, H.; Yamaguchi, Y,
“Self-linearizing technique for L-band HBT power amplifier: effect of source
impedance on phase distortion”, IEEE Microwave Theory and Techniques,
pp.2398 –2402,1996.
[12] J.S. Hong and M.J. Lancaster , “Microstrip Filters for RF/Microwave
Applications, ” ,WILEY INTER-SCIENCE , pp.235~272 , 2001 .
[13] Madjar, A. “a novel general approach for the optimum design of microwave and
millimeter wave sub-harmonic mixers”, IEEE Trans. On Microwave Theory and
Techniques, Vol. 44, No.11, pp.1997∼1999, Nov.1996.
[14] Waugh and D. LaCombe , “Unfolding the Lange coupler , ” IEEE Transaction on
Microwave Theory and Techniques , Vol.20 , No.11 , Nov.1972 , pp.777-779.
[15] B. Ulriksson , “ Continuous Varactor-Diode Phase Shifter With Optimized
Frequency Response , ” IEEE Transaction on Microwave Theory and
Techniques , Vol. 27 , July 1979 , pp. 650-654.
[16] Ulrich L.Rohde, David P.Newkrik, RF/Microwave Circuit Design for Wireless
Applications, Wiley, 2000.
[17] Janinckx, Michel S.J.Steyaert ,”A 1.8GHz CMOS Low-Phase-Noise VCO with
Prescaler”, IEEE Solid-State circuit, pp.1474-1482,1995.
[18] Y.S. Noh, T.W. Lee; C. S. Park,” Linearized high efficient HBT power amplifier
module for L-band application”, IEEE GaAs Digest, PP.197-200, 2001.
[19] Hau, G.; Iwata, N.; Nishimura, T.B.;”High efficiency, wide dynamic range
variable gain and power amplifier MMICs for wideband CDMA handsets”, IEEE
Microwave and Wireless Components Letters, pp.1315, 2000.
[20] J. V. Evans, “Proposed U.S. global satellite systems operating at Ka-band,” in
Proc. IEEE Aerosp. Conf., vol. 4, 1998, pp. 525-537.
[21] K. Fujii, Y. Hara, Y. Shibuya, T. Sakai, and Y. Takano, “Highly integrated T/R module for active phased array antennas,” in Proc. 1998 IEEE RFIC Dig.
Baltimore, MD, pp. 77-80.