| 研究生: |
陳銘輝 Chen, Ming-Hui |
|---|---|
| 論文名稱: |
單頻藍綠光外腔二極體雷射 Single frequency Blue and Green Laser Diode in External Cavity. |
| 指導教授: |
崔祥辰
Chui, Hsiang-Chen |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2019 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 二極體雷射 、頻率參考 、外腔雷射 、單頻 |
| 外文關鍵詞: | laser diode, frequency references, external cavity diode laser, single frequency |
| 相關次數: | 點閱:101 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文選擇並分析了在藍綠波段範圍內運作的氮化銦鎵(InGaN)雷射二極體(Laser Diode; LD),並以此二極體雷射,設計出光頻率基準。在進行氮化銦鎵二極體雷射放入頻率參考的光學系統研究之前,先行探討了氮化銦鎵二極體藍光雷射隨著工作電流和二極體溫度的模態演變。二極體藍光雷射可以在接近雷射發射閾值的情況下,發出線寬約為20 MHz的mW等級單頻雷射光束。當我們為特定的應用選擇適合二極體藍光雷射,分析其工作電流和二極體溫度對藍光雷射二極體的模態演變是非常重要的。
然後,設計並建置了利特洛(Littrow)類型的外腔二極體雷射器(External Cavity Diode Laser; ECDL)系統。其頻率穩定的單頻綠光氮化銦鎵外腔二極體雷射可以產生線寬為5.1 MHz且輸出功率超過40 mW的雷射光束。此外,我們在利特洛類型的外腔中展示了445 nm氮化銦鎵外腔二極體雷射。其調製範圍估計為4 nm。最大輸出功率可以高達20 mW,而斜率效率約為0.36 W / A。該氮化銦鎵外腔二極體雷射的線寬在雷射閾值時為4.7 MHz,如果在更高的電流下則是8.1MHz。藍光外腔二極體雷射可以在整個工作範圍內發出單頻雷射光。最後,我們討論使用基於碘分子超精細躍遷的飽和吸收光譜方法來實現穩頻。
In this thesis, Indium gallium nitride (InGaN) laser diodes (LDs) operated within a blue-green wavelength region was selected and analyzed for designing robust and compact frequency references. Before putting InGaN LDs inside the frequency reference optical system, the mode evolution of InGaN blue LDs with operating currents and diode temperatures was investigated. The blue LDs can deliver a mW-level single frequency beam with about 20-MHz linewidth at nearly above the lasing threshold. Analysis of the mode evolution of a blue laser diode with operating current and diode temperature is very important when how to choose the LDs for specific applications.
Then, an external cavity diode laser (ECDL) system in Littrow layout was designed and set up. A frequency-stable single-frequency green InGaN ECDL can produce a laser beam with its 5.1-MHz linewidth and the more than 40-mW output power. Furthermore, we show a single-frequency ECDL based on the 445-nm blue LD in the Littrow-type external cavity. Its tuning range was estimated at 4 nm. The maximum output power was up to 20 mW, and the slope efficiency was approximately 0.36 W/A. The ECDL linewidth was measured as 4.7 MHz at a lasing threshold to 8.1 MHz at higher applied currents. A blue ECDL can deliver a single frequency laser beam within the whole operation range. Finally, we reported a frequency stabilization using a saturated absorption spectroscopy method based on iodine hyperfine transitions can be realized with the ECDL.
[1] 崔祥辰, 光通訊頻段的絕對頻率標準, 新竹市: 國立清華大學; 2004.
[2] S.A. Diddams, The evolving optical frequency comb [Invited], J Opt Soc Am B, 27(2010) B51-B62.
[3] A. Avramescu, T. Lermer, J. Muller, C. Eichler, G. Bruederl, M. Sabathil, et al., True Green Laser Diodes at 524 nm with 50 mW Continuous Wave Output Power on c-Plane GaN, Appl Phys Express, 3(2010).
[4] T.L. Huang, W.Y. Cheng, Y.R. Lin, J.T. Shy, H.P. Liu, Sub-Doppler spectroscopy of molecular iodine at 531 nm using a frequency-doubled alpha-distributed feedback laser, Jpn J Appl Phys 2, 39(2000) L559-L61.
[5] W.Y. Cheng, L.S. Chen, T.H. Yoon, J.L. Hall, J. Ye, Sub-Doppler molecular-iodine transitions near the dissociation limit (523-498 nm), Opt Lett, 27(2002) 571-3.
[6] W. Zhao, L. Qiu, Y. Xiao, J. Yang, Laser differential confocal interference multi-parameter comprehensive measurement method and its system for spherical lens, Optics express, 24(2016) 22813-29.
[7] Y. Shen, Y. Liu, C. Ma, L.V. Wang, Focusing light through biological tissue and tissue-mimicking phantoms up to 9.6 cm in thickness with digital optical phase conjugation, J Biomed Opt, 21(2016) 85001.
[8] C. Eichler, S. Schad, F. Scholz, D. Hofstetter, S. Miller, A. Weimar, et al., Observation of temperature-independent longitudinal-mode patterns in violet-blue InGaN-based laser diodes, Ieee Photonic Tech L, 17(2005) 1782-4.
[9] M.S. Romadhon, A. Aljalal, W. Al-Basheer, K. Gasmi, Longitudinal modes evolution of a GaN-based blue laser diode, Optics and Laser Technology, 70(2015) 59-62.
[10] W. Al-Basheer, A. Aljalal, K. Gasmi, T.O. Adigun, High-resolution investigation of longitudinal modes of a GaN-based blue laser diode, in Optical Sensors 2017, International Society for Optics and Photonics2017, p. 102312V.
[11] Y.-C. Chi, T.-C. Wu, C.-Y. Lin, H.-H. Lu, H.-C. Kuo, G.-R. Lin, Underwater 6.4-m optical wireless communication with 8.8-Gbps encoded 450-nm GaN laser diode, 2016 International Semiconductor Laser Conference (ISLC), IEEE2016, pp. 1-2.
[12] Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, H.-C. Chui, Probing longitudinal modes evolution of a InGaN green laser diode, Optics & Laser Technology 102 (2018) 222-226.
[13] Y.-H. Chen, W.-C. Lin, J.-T. Shy, H.-C. Chui, Iodine-stabilized single-frequency green InGaN diode laser, Opt Lett, 43(2018) 126-9.
[14] Y. H. Chen, W. C. Lin, H. Z. Chen, J. T. Shy, and H. C. Chui, "Single-Frequency External Cavity Green Diode Laser," Ieee Photonics J 9 (2017).
[15] M. Hu, H. Nguyen, K. Song, Y. li, N. Visovsky, X. Liu, et al., High-power high-Modulation-speed 1060-nm DBR lasers for Green-light emission, Photonics Technology Letters, IEEE, 18(2006) 616-8.
[16] Y.-H. Chen, W.-C. Lin, H.-Z. Chen, J.-T. Shy, H.-C. Chui, Probing longitudinal modes evolution of a InGaN green laser diode, Optics & Laser Technology, 102(2018) 222-6.
[17] J.H. Kang, H. Wenzel, V. Hoffmann, E. Freier, L. Sulmoni, R.-S. Unger, et al., DFB laser diodes based on GaN using 10th order laterally coupled surface gratings, IEEE Photonics Technology Letters, 30(2017) 231-4.
[18] L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy, Applied optics, 42(2003) 2110-8.
[19] K. Holc, Z. Bielecki, J. Wojtas, P. Perlin, J. Goss, A. Czyżewski, et al., Blue laser diodes for trace matter detection, (2010).
[20] M. Chi, O.B. Jensen, P.M. Petersen, Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm, Applied optics, 55(2016) 2263-9.
[21] D. Ding, X. Lv, X. Chen, F. Wang, J. Zhang, K. Che, Tunable high-power blue external cavity semiconductor laser, Optics & Laser Technology, 94(2017) 1-5.
[22] D. Ding, W. Lv, X. Lv, X. Cai, Y. Zhang, B. Xu, et al., Influence of grating parameters on the performance of a high-power blue external-cavity semiconductor laser, Applied optics, 57(2018) 1589-93.
[23] T. Cao, Y. Li, C.-W. Wei, Y.-m. Qiu, Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials, Optics express, 25(2017) 9911-25.
[24] T. Cao, C. Wei, L. Mao, Ultrafast tunable chirped phase-change metamaterial with a low power, Optics Express, 23(2015) 4092-105.
[25] J. Yang, L. Qiu, W. Zhao, X. Zhang, X. Wang, Radius measurement by laser confocal technology, Appl Optics, 53(2014) 2860-5.
[26] T. Cao, C. Wei, R.E. Simpson, L. Zhang, M.J. Cryan, Fast tuning of double Fano resonance using a phase-change metamaterial under low power intensity, Scientific reports, 4(2014) 4463.
[27] T. Numai, Laser diodes and their applications to communications and information processing: John Wiley & Sons; 2010.
[28] S. Hooker, C.E. Webb, Laser Physics, Oxford University Press, Oxford ; New York, 2010.
[29] T. Weig, T. Hager, G. Brüderl, U. Strauss, U.T. Schwarz, Longitudinal mode competition and mode clustering in (Al, In) GaN laser diodes, Optics Express, 22(2014) 27489-503.
[30] T. Tahara, R. Otani, K. Omae, T. Gotohda, Y. Arai, Y. Takaki, Multiwavelength digital holography with wavelength-multiplexed holograms and arbitrary symmetric phase shifts, Opt. Express, 2017. 25 (10) : p. 11157–11172.
[31] M.J. Chi, O.B. Jensen, P.M. Petersen, Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm, Appl. Opt. Express, 2016. 55 (9) : p.2263–2269.
[32] C.J.H. Pagett, P.H. Moriya, R.C. Teixeira, R.F. Shiozaki, M. Hemmerling, P.W. Courteille, Injection locking of a low cost high power laser diode at 461 nm, 2016. 87(5) 053105.
[33] K. Martin, W. Clarkson, D. Hanna, 3 W of single-frequency output at 532 nm by intracavity frequency doubling of a diode-bar-pumped Nd: YAG ring laser, Optics letters, 21(1996) 875-7.
[34] Y.-F. Chen, T.-M. Huang, C.-L. Wang, L.-J. Lee, Compact and efficient 3.2-W diode-pumped Nd: YVO 4/KTP green laser, Applied optics, 37(1998) 5727-30..
[35] B. Li, A. Yu, S. Luo, X. Wang, D. Zuo, Sensitive Raman-Scattering-based multi-gas analysis using a narrow line-width violet external cavity diode laser, Advanced Spectroscopy and Applications, Optical Society of America, 2017, p. ASu1A. 5.
[36] H. Oozeki, H. Masuda, K. Miyata, T. Matsuura, T. Takahashi, Portable 532 nm Iodine-Stabilized DPSS Laser for Length Standard, Key Engineering Materials, 523-524(2012) 1047-52.
[37] K.B. MacAdam, A. Steinbach, C. Wieman, A narrow‐band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb, 60(1992) 1098-111.
[38] L. Ricci, M. Weidemüller, T. Esslinger, A. Hemmerich, C. Zimmermann, V. Vuletic, et al., A compact grating-stabilized diode laser system for atomic physics, Opt Commun, 117(1995) 541-9.
[39] L. Hildebrandt, R. Knispel, S. Stry, J.R. Sacher, F. Schael, Antireflection-coated blue GaN laser diodes in an external cavity and Doppler-free indium absorption spectroscopy, Appl. Optics,2003. 42 (12) : p. 2110–2118.
[40] T.W. Liu, C.M. Wu, Y.C. Hsu, W.Y. Cheng, Dual Ti:sapphire comb lasers by a fiber laser pumping scheme and a hand-sized optical frequency reference, Appl Phys B-Lasers O, 117(2014) 699-705.
[41] C.M. Wu, T.W. Liu, M.H. Wu, R.K. Lee, W.Y. Cheng, Absolute frequency of cesium 6S-8S 822 nm two-photon transition by a high-resolution scheme, Opt Lett, 38(2013) 3186-9.
[42] H. Feng-Lei, I. Jun, A Compact I 2 -Stabilized 532 nm Nd:YAG Laser, Jpn J Appl Phys, 36(1997) 4333.
[43] T. Kobayashi, D. Akamatsu, K. Hosaka, H. Inaba, S. Okubo, T. Tanabe, et al., Compact iodine-stabilized laser operating at 531 nm with stability at the 10(-12) level and using a coin-sized laser module, Opt Express, 23(2015) 20749-59.
[44] H.-C. Chui, S.-Y. Shaw, M.-S. Ko, Y.-W. Liu, J.-T. Shy, T. Lin, et al., Iodine stabilization of a diode laser in the optical communication band, Opt Lett, 30(2005) 646-8.
[45] S. Gerstenkorn, P. Luc, Atlas du spectre d'absorption de la molécule d'iode, 14800-20000 cm-¹, Paris: Centre national de la recherche scientifique; 1978.
[46] E.J. Salumbides, K.S.E. Eikema, W. Ubachs, U. Hollenstein, H. Knoeckel, E. Tiemann, The hyperfine structure of I-129(2) and I-127 I-129 in the B-3 Pi(+)(0u)-X-1 Sigma(+)(g) band system, Mol Phys, 104(2006) 2641-52.
[47] H. Knockel, B. Bodermann, E. Tiemann, High precision description of the rovibronic structure of the I2B-X spectrum, Eur Phys J D, 28(2004) 199-209.
[48] E.J. Salumbides, K.S.E. Eikema, W. Ubachs, U. Hollenstein, H. Knockel, E. Tiemann, Improved potentials and Born-Oppenheimer corrections by new measurements of transitions of I-129(2) and (II)-I-127-I-129 in the B-3 Pi(0u+)-X-1 Sigma(+)(g) band system, Eur Phys J D, 47(2008) 171-9.