簡易檢索 / 詳目顯示

研究生: 江佩芸
Chiang, Pei-Yun
論文名稱: 具導電分佈式布拉格反射鏡發光二極體之特性研究
Performance Investigation of Conduct Distributed Bragg Reflector Utilized in Light Emitting Diode
指導教授: 李欣縈
Lee, Hsin-Ying
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 50
中文關鍵詞: 分佈式布拉格反射鏡複合式反射鏡發光二極體
外文關鍵詞: Distributed Bragg reflector, hybrid reflector, light emitting diode
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是以磁控式射頻濺鍍系統沉積摻雜鈮之二氧化鈦薄膜與銦錫氧化物薄膜,將其交互堆疊以製作具導電之分佈式布拉格反射鏡,並將其應用於藍光發光二極體,以增加其出光效率。摻雜鈮之二氧化鈦薄膜在氫氣環境下經溫度400oC熱處理30分鐘,可形成為透明導電薄膜,其電阻率約為1.12x10-3 Ω-cm。利用厚度分別為45 nm及60 nm之二氧化鈦與銦錫氧化物薄膜交互堆疊至13對時,則可使具導電之分佈式布拉格反射鏡於450 nm波段具有最高之反射率94.6 %。本研究將導電分佈式布拉格反射鏡結合金屬反射鏡製作成複合式反射鏡,應用於覆晶型藍光發光二極體上,藉此增強其藍光之出光效率。將分佈式布拉格反射鏡與單純金屬反射鏡及複合式反射鏡三種不同的反射鏡應用於傳統覆晶型發光二極體, 並對藍光發光強度與光輸出功率進行比較,可得知其藍光之強度明顯的變化,其相對應之藍光增強比例分別為20.5%、70.6%及95.8%,而光輸出功率比例各別為16.4%、43.1%及57.3%。

    In this work, the niobium (Nb)-doped titanium dioxide (TiO2) films, referred as TNO films, and indium tin oxide (ITO) films were alternately deposited using magnetron radio frequency (RF) sputtering to form the distributed bragg reflector (DBR). The DBR was used to enhance the extraction efficiency of the GaN blue LEDs. The resistivity of the TNO films with thermal annealing in H2 ambience, at 400oC for 30 mins was 1.12x10-3 Ω-cm. The 45-nm-thick TNO film and 60-nm-thick ITO film were alternately deposited for 13 pairs to form the DBR with high reflectivity of 94.6 % at wavelength of 450 nm. DBR and metal reflector was combined to the hybrid reflector applied in the GaN blue LEDs to enhance the extraction efficiency. Comparison the luminous intensity and the light output power of the flip-chip GaN blue LEDs, the luminous intensity of the flip-chip GaN blue LEDs with DBR, metal reflector, and hybrid reflector enhanced to be 20.5%, 70.6%, and 95.8%, respectively. And the light output power enhanced to be 16.4%, 43.1%, and 57.3%, respectively.

    摘要 I Abstract III 誌謝 V 目錄 VI 表目錄 X 圖目錄 XI 第一章 序論 1 1.1 透明導電薄膜的發展 1 1.2 發光二極體的發展 2 1.3 研究動機與目的 2 第二章 理論 5 2.1 二氧化鈦及摻雜鈮之二氧化鈦之缺陷平衡 5 2.1.1 非定比性化合物 5 2.1.2 缺陷反應 5 2.1.3 Ti3+離子系列 7 2.2 摻雜鈮之二氧化鈦 9 2.2.1 二氧化鈦晶型結構 9 2.2.2 摻雜鈮之二氧化鈦非等相性導電 10 2.2.3 摻雜鈮之二氧化鈦晶向與基材、氧分壓及製程溫度之關係 10 2.3 物理氣相沉積系統 11 2.3.1 物理氣相沉積方式 11 2.3.2 磁控式物理氣相沉積濺鍍系統 11 2.3.3 濺鍍原理 11 2.4 分佈式布拉格反射鏡 12 2.4.1 法布里-珀羅共振腔原理(Fabry-Perot Cavity Theory) 12 2.4.2 反射率與截止頻寬 13 2.4.3 分佈式布拉格反射鏡穿透深度與等效共振腔長 14 2.5 發光二極體發光原理 15 2.5.1 弗斯涅爾(Fresnel Loss) 15 2.5.2 司乃耳定律(Snell’s Law) 16 2.6 量測原理 17 2.6.1 橢圓偏光儀 17 2.6.2 分光光譜儀 17 2.6.3 積分球原理 18 第三章 實驗流程 25 3.1 導電分佈式布拉格反射鏡製作 25 3.1.1 試片清潔 25 3.1.2 堆疊導電分佈式布拉格反射鏡 25 3.2 製作完成元件 26 3.2.1 試片清潔 26 3.2.2 氮化鎵發光二極體製程 26 3.2.3 不同反射鏡之製作 29 第四章 實驗結果與討論 35 4.1 實驗流程 35 4.2 製作摻雜鈮之二氧化鈦透明導電薄膜 35 4.2.1 不同氫氣含量成長之導電薄膜 35 4.2.2 摻雜鈮之二氧化鈦與銦錫氧化物透明導電薄膜經不同溫度退火之比較 36 4.3 分佈式布拉格反射鏡之量測 37 4.3.1 橢圓偏光儀量測 37 4.3.2 分光光譜儀量測 37 4.4 製作完成之元件特性量測 38 4.4.1 元件電激發光光譜(EL)分析 38 4.4.2 元件輸出光功率特性 39 第五章 結論 46 參考文獻 47

    [1] Y. Furubayashi, T. Hitosugi, Y. Yamamoto, K. Inaba, G. Kinoda, Y. Hirose, T.Shimada, and T. Hasegawa, “A transparent metal: Nb-doped anatase TiO2”, Appl. Phys. Lett., Vol. 86, 252101(2005).
    [2] T. Hitosugi, A. Ueda, S. Nakao, N. Yamada, Y. Furubayashi, Y. Hirose, S. Konuma, T. Shimada, and T. Hasegawa, “Transparent conducting properties of anatase Ti0.94Nb0.06O2 polycrystalline films on glass substrate”, Thin Solid Films, Vol. 516, 5750(2008).
    [3] D. Mardare, M. Tasca, M. Delibas, and G. I. Rusu, “On the structural properties and optical transmittance of TiO2 r.f. sputtered thin films”, Appl. Surf. Sci., Vol. 156, 200(2000).
    [4] C. T. Lee, U. Z. Yang, C. S. Lee, and P. S. Chen, “White light emission of monolithic carbon-implanted InGaN-GaN light-emission diodes”, IEEE Photonics Technol. Lett., Vol. 18, 2029(2006).
    [5] J.Piprek, R. Farrell, S. DenBaars, and S. Nakamura, “Effects of built-in polarization on InGaN/GaN vertical-cavity surface-emitting lasers”, IEEE Photonics Technol. Lett., Vol. 18, 7(2006).
    [6] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. Ochiai Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology”, IEEE J. Select. Topics Quantum Electron., Vol. 8, 310(2002).
    [7] K. Murakami, T. Taguchi, M. Yoshino, I. W. Wu, and H. Uchiike, “Display Technologies III”, Proc. SPIE, Vol. 4079, 112(2000).
    [8] Y. Uchida, T. Setomoto, T. Taguchi, Y. Nakagawa, K. Miyazaki, I. W. Wu, H. Uchiike (Eds.), “Display Technologies III”, Proc. SPIE, Vol. 4079, 120(2000).
    [9] S. Nakamura, and G. Fasol, “The Blue Laser Diode: GaN based light emitters and lasers”, Spinger, Berlin(1997).
    [10] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material”, United States Patent, US 5998925(1999).
    [11] E. F. Schubert, “Light Emitting Diodes”, Cambridge University Press, Cambridge(2006).
    [12] S. J. Chang, C. F. Shen, M. H. Hsieh, C. T. Kuo, T. K. Ko, W. S. Chen, and S. C. Shei, “Nitride-Based LEDs With a Hybrid Al Mirror+TiO2/SiO2 DBR Backside Reflector”, J. Lightwave Technol., Vol. 26, 3131(2008).
    [13] L. R. Sheppard, “Defect Chemistry and Charge Transport in Niobium Doped Titanium Dioxide”, U of New South Wales, Australia ( 2007).
    [14] M. K. Nowotny, L. R. Sheppard, T. Bak, and J. Nowotny, “Defect Chemistry of Titanium Dioxide. Application of Defect Engineering in Processing of TiO2-Based Photocatalysts”, J. Phys. Chem. C, Vol. 112, 5275(2008).
    [15] U. Diebold, “The surface science of titanium dioxide”, Surf. Sci. Rep., Vol. 48, 53(2003).
    [16] T. Hitosugi, H. Kamisaka, K. Yamashita, H. Nogawa, Y. Furubayashi, S. Nakao, N. Yamada, A. Chikamatsu, H. Kumigashira, M. Oshima, Y. Hirose, T. Shimada, and T. Hasegawa, “Electronic Band Structure of Transparent Conductor: Nb-Doped Anatase TiO2”, Appl. Phys. Exp., Vol. 1, 111203(2008).
    [17] D. Kurita, S. ohta, K. Sugiura, H. Ohta, and K. Koumoto, “Carrier generation and transport properties of heavily Nb-doped anatase TiO2 epitaxial films at high temperatures”, J. Appl. Phys., Vol. 100, 096105(2006).
    [18] C. D. Valentin, F. Pacchioni, and A. Selloni, “Reduced and n-Type Doped TiO2: Nature of Ti3+ Species”, J. Phys. Chem. C , Vol. 113, 20543(2009).
    [19] N. Yamada, T. Hitosugi, J. Kasai, N. L. H. Hoang, S. Nakao, Y. Hirose, T. Shimada, and T. Hasegawa, “Direct growth of transparent conducting Nb-doped anatase TiO2 polycrystalline films on glass”, J. Appl. Phys., Vol. 105, 123702(2009).
    [20] J. Szczyrbowski, G. Bräuer, M. Ruske, J. Bartella, J. Schroeder, and A. Zmelty, “Some properties of TiO2 layers prepared by medium frequency reactive sputtering”, Surf. Coat. Technol., Vol. 112, 261(1999).
    [21] C. M. Maghanga, G. A. Niklasson, and C. G. Granqvist, “Optical properties of sputter deposited transparent and conducting TiO2:Nb films”, Thin Solid Films, Vol. 518, 1254(2009).
    [22] 李正中, 薄膜光學與鍍膜技術(藝軒圖書出版社, 1999)。
    [23] 郭浩中、賴芳儀、郭守義, LED 原理與應用(五南圖書出版公司, 2009).

    無法下載圖示 校內:2017-09-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE