簡易檢索 / 詳目顯示

研究生: 鄭茜馨
Cheng, Chien-Hsin
論文名稱: 大鼠在右美托嘧啶誘導麻醉下學習味覺嫌惡制約與其神經機制
Neural mechanism of conditioned taste aversion learning under dexmedetomidine-induced anesthesia in rats
指導教授: 陳德祐
Chen, Der-Yow
學位類別: 碩士
Master
系所名稱: 社會科學院 - 心理學系
Department of Psychology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 65
中文關鍵詞: 基底外側杏仁核腎上腺素乙型腎上腺素受體
外文關鍵詞: basolateral amygdala, epinephrine, β-adrenoceptor
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 意識在學習歷程中扮演怎樣的角色,一直是心理學中備受關注的議題。以往在研究意識與學習記憶的關係時,大多以閾值下刺激為手段觀察清醒的人類受試者的學習表現。在這些訓練過程中,受試者依然具備完整的意識狀態,雖未察覺到刺激,仍與「非完整意識狀態」下進行的學習仍有差異。過去我們實驗室以麻醉作為破壞完整意識的手段,成功建立了麻醉下抑制型逃避學習作業的動物模型,並發現基底外側杏仁核是建立此種學習的重要腦區。本論文嘗試以另一實驗典範——味覺嫌惡制約進行麻醉下學習。結果發現,麻醉狀態下隨著鋰鹽劑量增加,味覺嫌惡制約的效果越強。過去的研究中發現周邊注射腎上腺素會增強學習效果,在本論文中也發現它可以促進低劑量鋰鹽的味覺嫌惡制約。腦部操弄的實驗中發現,在給予鋰鹽之前先將乙型腎上腺素受體拮抗劑 (propranolol) 顱內注射到基底外側杏仁核暫時抑制其活性,會破壞麻醉下的味覺嫌惡制約。總體而言,本論文成功建立麻醉下學習味覺嫌惡制約的動物模型,說明麻醉下學習不僅限於抑制型逃避學習此一特定作業,也可在其他學習模型中找到類似的現象。先前的實驗中發現以利多卡因阻斷離子流通、抑制基底外側杏仁核的活性會破壞麻醉下建立的抑制型逃避學習,而本論文更進一步說明基底外側杏仁核中的乙型腎上腺素受體與能否成功建立麻醉下學習有重要關聯。未來將以此結果為基礎,逐漸釐清麻醉下建立學習時相關的神經表徵與作用機制。

    Our previous studies demonstrated that rats can acquire modified inhibitory avoidance task under dexmedetomidine-induced anesthesia, and basolateral amygdala is an important region for establishing this type of learning. In addition, epinephrine enhanced inhibitory avoidance learning under anesthesia. In this study, we adopted another paradigm, conditioned taste aversion (CTA), to investigate the phenomenon of learning under anesthesia. Saccharin was pumped on the tongues of anesthetized rats, followed by lithium chloride (LiCl) injection which induced illness. After 20 minutes, atipamezole was given to reverse anesthesia. The results showed that anesthetized rats can acquire CTA, and peripheral injection of epinephrine can improve a weak CTA learning. Furthermore, infusion of β-adrenoceptor antagonist propranolol into the basolateral amygdala (BLA) before the administration of LiCl impaired this learning. In conclusion, our findings indicated that although the training was conducted under anesthesia, rats can still acquire the conditioning and avoid drinking this solution while awake. Consistent with our previous studies, memory enhancing effect of epinephrine can also be found in CTA learning under anesthesia. In addition, beta adrenoceptors in BLA are involved in this learning.

    摘要 i Extended Abstract ii 致謝 vi 第一章、        緒論 1 第一節、     麻醉下學習的可能性 3 第二節、     麻醉下學習的研究典範 5 第三節、     麻醉劑的選擇 6 第四節、     味覺嫌惡制約現象 8 第五節、     測量味覺嫌惡制約的指標 11 第六節、     味覺嫌惡制約與腎上腺系統 12 第七節、     味覺嫌惡制約的中樞神經機制 13 第八節、     研究目的 16 第二章、        前導實驗 17 第一節、     實驗動物 17 第二節、     藥品 17 第三節、     實驗儀器 18 第四節、     數據分析 18 第五節、     前導實驗一:不同指標作業測量誘發麻醉下味覺嫌惡制約之效果 19 第六節、     前導實驗二:檢驗麻醉下制約訓練後直接進行雙管測試之效果 22 第七節、     前導實驗總結 26 第三章、        材料與方法 28 第一節、     實驗動物 28 第二節、     藥品 28 第三節、     手術 29 第四節、     顱內藥物注射 30 第五節、     組織學驗證 30 第六節、     實驗儀器 31 第七節、     實驗程序 32 第八節、     數據分析 35 第四章、        實驗結果 36 實驗一、右美托嘧啶麻醉下不同劑量之鋰鹽誘發的味覺嫌惡制約 36 實驗二、周邊注射腎上腺素對麻醉下建立味覺嫌惡制約之影響 38 實驗三、阻斷基底外側杏仁核的乙型腎上腺素受體會破壞麻醉下建立的味覺嫌惡制約 42 第五章、        討論 45 第一節、     意識在麻醉下學習味覺嫌惡制約之角色 45 第二節、     初步探索麻醉下學習味覺嫌惡制約之可能性 46 第三節、     周邊注射腎上腺素促進麻醉下學習味覺嫌惡制約之效果 47 第四節、     麻醉下學習味覺嫌惡制約涉及的制約學習類型 48 第五節、     杏仁核在麻醉下學習味覺嫌惡制約之角色 50 第六節、     基底外側杏仁核中乙型正腎上腺素受體對麻醉下學習味覺嫌惡制約之影響 52 第七節、     腎上腺素系統對記憶之影響:周邊注射腎上腺素與右美托嘧啶之比較 53 第八節、     本研究的貢獻與未來發展 54 第九節、     結語 55 參考文獻 57

    蕭翔允. (2017). 大鼠在右美托嘧啶誘導麻醉下學習抑制型逃避學習作業與其神經機制. 國立成功大學心理學研究所. https://hdl.handle.net/11296/a5kggq

    Alkire, M. T., Gruver, R., Miller, J., McReynolds, J. R., Hahn, E. L., & Cahill, L. (2008). Neuroimaging analysis of an anesthetic gas that blocks human emotional memory. Proceedings of the National Academy of Sciences of the United States of America, 105(5), 1722-1727. https://doi.org/10.1073/pnas.0711651105

    Andrade, J. (1995). Learning during anaesthesia: a review. British Journal of Psychology, 86(4), 479-506. https://doi.org/10.1111/j.2044-8295.1995.tb02566.x

    Andrade, J. (1996). Investigations of hypesthesia: using anesthetics to explore relationships between consciousness, learning, and memory. Conscious and Cognition, 5(4), 562-580. https://doi.org/10.1006/ccog.1996.0033

    Bahar, A., Samuel, A., Hazvi, S., & Dudai, Y. (2003). The amygdalar circuit that acquires taste aversion memory differs from the circuit that extinguishes it. European Journal of Neuroscience, 17(7), 1527-1530. https://doi.org/10.1046/j.1460-9568.2003.02551.x

    Barot, S. K., Kyono, Y., Clark, E. W., & Bernstein, I. L. (2008). Visualizing stimulus convergence in amygdala neurons during associative learning. Proceedings of the National Academy of Sciences of the United States of America, 105(52), 20959-20963. https://doi.org/10.1073/pnas.0808996106

    Bechara, A., Tranel, D., Damasio, H., Adolphs, R., Rockland, C., & Damasio, A. R. (1995). Double dissociation of conditioning and declarative knowledge relative to the amygdala and hippocampus in humans. Science, 269(5227), 1115-1118. https://doi.org/10.1126/science.7652558

    Cappell, H., Leblanc, A. E., & Endrenyi, L. (1972). Effects of chlordiazepoxide and ethanol on the extinction of a conditioned taste aversion. Physiology and Behavior, 9(2), 167-169. https://doi.org/10.1016/0031-9384(72)90230-2

    Caza, P. A., Brown, L., & Spear, N. E. (1982). Epinephrine-induced conditioned taste aversion. Hormones and Behavior, 16(1), 31-45. https://doi.org/10.1016/0018-506x(82)90004-6

    Chernow, B., Lake, C. R., Cruess, D., Coyle, J., Hughes, P., Balestrieri, F., Casey, L., Rainey, T. G., & Fletcher, J. R. (1982). Plasma, urine, and CSF catecholamine concentrations during and after ketamine anesthesia. Critical Care Medicine Journal, 10(9), 600-603. https://doi.org/10.1097/00003246-198209000-00009

    Davies, M. F., Tsui, J., Flannery, J. A., Li, X., DeLorey, T. M., & Hoffman, B. B. (2004). Activation of alpha2 adrenergic receptors suppresses fear conditioning: expression of c-Fos and phosphorylated CREB in mouse amygdala. Neuropsychopharmacology, 29(2), 229-239. https://doi.org/10.1038/sj.npp.1300324

    Dawson, M. E. (1970). Cognition and conditioning: effects of masking the CS-UCS contingency on human GSR classical conditioning. Journal of Experimental Psychology: General, 85(3), 389-396. https://doi.org/10.1037/h0029715

    Deutsch, R. (1978). Effects of CS amount on conditioned taste aversion at different CS-US intervals. Animal Learning & Behavior, 6(3), 258-260. https://doi.org/10.3758/BF03209610

    Domjan, M., & Levy, C. J. (1977). Taste aversions conditioned by the aversiveness of insulin and formalin: role of CS specificity. Journal of Experimental Psychology: Animal Behavior Processes, 3(2), 119-131. https://doi.org/10.1037//0097-7403.3.2.119

    Dragoin, W., McCleary, G. E., & McCleary, P. (1971). A comparison of two methods of measuring conditioned taste aversions. Behavior Research Methods & Instrumentation, 3(6), 309-310. https://doi.org/10.3758/BF03209954

    Dwyer, R., Bennett, H. L., Eger, E. I., 2nd, & Heilbron, D. (1992). Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology, 77(5), 888-898. https://doi.org/10.1097/00000542-199211000-00009

    Ebert, T. J., Hall, J. E., Barney, J. A., Uhrich, T. D., & Colinco, M. D. (2000). The effects of increasing plasma concentrations of dexmedetomidine in humans. Anesthesiology, 93(2), 382-394. https://doi.org/10.1097/00000542-200008000-00016

    Edeline, J. M., & Neuenschwander-el Massioui, N. (1988). Retention of CS-US association learned under ketamine anesthesia. Brain Research, 457(2), 274-280. https://doi.org/10.1016/0006-8993(88)90696-8

    Etscorn, F., & Stephens, R. (1973). Establishment of conditioned taste aversions with a 24-hour CS-US interval. Physiological Psychology, 1(3), 251-253. https://doi.org/10.3758/BF03326916

    Ferrari, C. M., O'Connor, D. A., & Riley, A. L. (1991). Cocaine-induced taste aversions: effect of route of administration. Pharmacology Biochemistry and Behavior, 38(2), 267-271. https://doi.org/10.1016/0091-3057(91)90277-9

    Ferreira, G., Miranda, M. I., De la Cruz, V., Rodríguez-Ortiz, C. J., & Bermúdez-Rattoni, F. (2005). Basolateral amygdala glutamatergic activation enhances taste aversion through NMDA receptor activation in the insular cortex. European Journal of Neuroscience, 22(10), 2596-2604. https://doi.org/10.1111/j.1460-9568.2005.04440.x

    Ferry, B., & McGaugh, J. L. (1999). Clenbuterol Administration into the Basolateral Amygdala Post-training Enhances Retention in an Inhibitory Avoidance Task. Neurobiology of Learning and Memory, 72(1), 8-12. https://doi.org/10.1006/nlme.1998.3904

    Ferry, B., Roozendaal, B., & McGaugh, J. L. (1999a). Involvement of alpha1-adrenoceptors in the basolateral amygdala in modulation of memory storage. European Journal of Pharmacology, 372(1), 9-16. https://doi.org/10.1016/s0014-2999(99)00169-7

    Ferry, B., Roozendaal, B., & McGaugh, J. L. (1999b). Role of norepinephrine in mediating stress hormone regulation of long-term memory storage: a critical involvement of the amygdala. Biological Psychiatry, 46(9), 1140-1152. https://doi.org/10.1016/S0006-3223(99)00157-2

    Fukuda, M., Vazquez, A., Zong, X., & Kim, S.-G. (2012). Effects of the α 2 -adrenergic receptor agonist dexmedetomidine on neural, vascular and BOLD fMRI responses in the somatosensory cortex. European Journal of Neuroscience, 37(1), 80-95. https://doi.org/10.1111/ejn.12024

    Gallagher, M., & Chiba, A. A. (1996). The amygdala and emotion. Current Opinion in Neurobiology, 6(2), 221-227. https://doi.org/10.1016/s0959-4388(96)80076-6

    Gallagher, M., Kapp, B. S., Musty, R. E., & Driscoll, P. A. (1977). Memory formation: evidence for a specific neurochemical system in the amygdala. Science, 198(4315), 423-425. https://doi.org/10.1126/science.20664

    Gallo, M., Roldan, G., & Bureš, J. (1992). Differential involvement of gustatory insular cortex and amygdala in the acquisition and retrieval of conditioned taste aversion in rats. Behavioural Brain Research, 52(1), 91-97. https://doi.org/10.1016/S0166-4328(05)80328-6

    Garcia, J., Kimeldorf, D. J., & Koelling, R. A. (1955). Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science, 122(3160), 157-158.

    Gertler, R., Brown, H. C., Mitchell, D. H., & Silvius, E. N. (2001). Dexmedetomidine: a novel sedative-analgesic agent. Baylor University Medical Center Proceedings, 14(1), 13-21. https://doi.org/10.1080/08998280.2001.11927725

    Gold, P. E., & Van Buskirk, R. B. (1975). Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behavioral Biology, 13(2), 145-153. https://doi.org/10.1016/S0091-6773(75)91784-8

    Guzmán-Ramos, K., Osorio-Gómez, D., Moreno-Castilla, P., & Bermúdez-Rattoni, F. (2012). Post-acquisition release of glutamate and norepinephrine in the amygdala is involved in taste-aversion memory consolidation. Learning & Memory, 19(6), 231-238. https://doi.org/10.1101/lm.024703.111

    Hildebrandt, I. J., Su, H., & Weber, W. A. (2008). Anesthesia and other considerations for in vivo imaging of small animals. Institute for Laboratory Animal Research Journal, 49(1), 17-26. https://doi.org/10.1093/ilar.49.1.17

    Hsu, Y. W., Cortinez, L. I., Robertson, K. M., Keifer, J. C., Sum-Ping, S. T., Moretti, E. W., Young, C. C., Wright, D. R., Macleod, D. B., & Somma, J. (2004). Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology, 101(5), 1066-1076. https://doi.org/10.1097/00000542-200411000-00005

    Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat's striate cortex. The Journal of Physiology, 148(3), 574-591. https://doi.org/10.1113/jphysiol.1959.sp006308

    Ishiyama, T., Dohi, S., Iida, H., Watanabe, Y., & Shimonaka, H. (1995). Mechanisms of dexmedetomidine-induced cerebrovascular effects in canine in vivo experiments. Anesthesia & Analgesia, 81(6), 1208-1215. https://doi.org/10.1097/00000539-199512000-00016

    Iwamoto, E. T., & Williamson, E. C. (1984). Nicotine-induced taste aversion: characterization and preexposure effects in rats. Pharmacology Biochemistry and Behavior, 21(4), 527-532. https://doi.org/10.1016/s0091-3057(84)80034-9

    Kemenes, G., & Benjamin, P. R. (1994). Training in a novel environment improves the appetitive learning performance of the snail, Lymnaea stagnalis. Behavioral and Neural Biology, 61(2), 139-149. https://doi.org/10.1016/S0163-1047(05)80067-6

    Knight, D. C., Nguyen, H. T., & Bandettini, P. A. (2003). Expression of conditional fear with and without awareness. Proceedings of the National Academy of Sciences of the United States of America, 100(25), 15280-15283. https://doi.org/10.1073/pnas.2535780100

    Lalumiere, R. T., & McGaugh, J. L. (2005). Memory enhancement induced by post-training intrabasolateral amygdala infusions of beta-adrenergic or muscarinic agonists requires activation of dopamine receptors: Involvement of right, but not left, basolateral amygdala. Learning & Memory, 12(5), 527-532. https://doi.org/10.1101/lm.97405

    Lalumiere, R. T., Nguyen, L. T., & McGaugh, J. L. (2004). Post-training intrabasolateral amygdala infusions of dopamine modulate consolidation of inhibitory avoidance memory: involvement of noradrenergic and cholinergic systems. The European journal of neuroscience, 20(10), 2804-2810. https://doi.org/10.1111/j.1460-9568.2004.03744.x

    Lavond, D. G., Kim, J. J., & Thompson, R. F. (1993). Mammalian brain substrates of aversive classical conditioning. Annual Review of Psychology, 44, 317-342. https://doi.org/10.1146/annurev.ps.44.020193.001533

    Li, B. H., Lohmann, J. S., Schuler, H. G., & Cronin, A. J. (2003). Preservation of the cortical somatosensory-evoked potential during dexmedetomidine infusion in rats. Anesthesia & Analgesia, 96(4), 1155-1160. https://doi.org/10.1213/01.Ane.0000053239.62623.32

    Li, K. C., Hsiao, S., & Li, J. S. (2013). Conditioned taste aversion as instrumental punishment. Journal of Experimental Psychology: Animal Behavior Processes, 39(3), 294-297. https://doi.org/10.1037/a0031822

    Liang, K. C., Chen, L. L., & Huang, T. E. (1995). The role of amygdala norepinephrine in memory formation: involvement in the memory enhancing effect of peripheral epinephrine. Chinese Journal of Physiology, 38(2), 81-91.

    Liang, K. C., Juler, R. G., & McGaugh, J. L. (1986). Modulating effects of posttraining epinephrine on memory: Involvement of the amygdala noradrenergic system. Brain Research, 368(1), 125-133. https://doi.org/https://doi.org/10.1016/0006-8993(86)91049-8

    Liang, K. C., McGaugh, J. L., & Yao, H. Y. (1990). Involvement of amygdala pathways in the influence of post-training intra-amygdala norepinephrine and peripheral epinephrine on memory storage. Brain Research, 508(2), 225-233. https://doi.org/10.1016/0006-8993(90)90400-6

    Liu, X., Zhu, X. H., Zhang, Y., & Chen, W. (2011). Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cerebral Cortex journal, 21(2), 374-384. https://doi.org/10.1093/cercor/bhq105

    Liu, X., Zhu, X. H., Zhang, Y., & Chen, W. (2013). The change of functional connectivity specificity in rats under various anesthesia levels and its neural origin. Brain Topography, 26(3), 363-377. https://doi.org/10.1007/s10548-012-0267-5

    Loftus, E. F., Schooler, J. W., Loftus, G. R., & Glauber, D. T. (1985). Memory for events occurring under anesthesia. Acta Psychologica, 59(2), 123-128. https://doi.org/10.1016/0001-6918(85)90016-2

    Lubke, G. H., Kerssens, C., Phaf, H., & Sebel, P. S. (1999). Dependence of explicit and implicit memory on hypnotic state in trauma patients. Anesthesiology, 90(3), 670-680. https://doi.org/10.1097/00000542-199903000-00007

    Mandino, F., Cerri, D. H., Garin, C. M., Straathof, M., van Tilborg, G. A. F., Chakravarty, M. M., Dhenain, M., Dijkhuizen, R. M., Gozzi, A., Hess, A., Keilholz, S. D., Lerch, J. P., Shih, Y. I., & Grandjean, J. (2019). Animal functional magnetic resonance imaging: trends and path toward standardization. Frontiers in Neuroinformatics, 13, 78. https://doi.org/10.3389/fninf.2019.00078

    Manns, J. R., Clark, R. E., & Squire, L. (2001). Single-cue delay eyeblink conditioning is unrelated to awareness. Cognitive, Affective, & Behavioral Neuroscience, 1(2), 192-198. https://doi.org/10.3758/cabn.1.2.192

    McDonald, R. J., & White, N. M. (1993). A triple dissociation of memory systems: hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107(1), 3-22. https://doi.org/10.1037//0735-7044.107.1.3

    McGaugh, J. L. (2013). Making lasting memories: remembering the significant. Proceedings of the National Academy of Sciences of the United States of America, 110(supplement_2), 10402-10407. https://doi.org/10.1073/pnas.1301209110

    McGaugh, J. L., McIntyre, C. K., & Power, A. E. (2002). Amygdala Modulation of Memory Consolidation: Interaction with Other Brain Systems. Neurobiology of Learning and Memory, 78(3), 539-552. https://doi.org/10.1006/nlme.2002.4082

    McGaugh, J. L., & Roozendaal, B. (2002). Role of adrenal stress hormones in forming lasting memories in the brain. Current Opinion in Neurobiology, 12(2), 205-210. https://doi.org/10.1016/S0959-4388(02)00306-9

    Miranda, M. I., LaLumiere, R. T., Buen, T. V., Bermudez-Rattoni, F., & McGaugh, J. L. (2003). Blockade of noradrenergic receptors in the basolateral amygdala impairs taste memory. European Journal of Neuroscience, 18(9), 2605-2610. https://doi.org/10.1046/j.1460-9568.2003.03008.x

    Miranda, M. I., & McGaugh, J. L. (2004). Enhancement of inhibitory avoidance and conditioned taste aversion memory with insular cortex infusions of 8-Br-cAMP: involvement of the basolateral amygdala. Learning & Memory, 11(3), 312-317. https://doi.org/10.1101/lm.72804

    Morin, J. P., Rodríguez-Nava, E., Torres-García, V. M., Contreras-Vázquez, O. A., Castellanos-Pérez, C. A., Tovar-Díaz, J., & Roldán-Roldán, G. (2021). Muscarinic receptor signaling in the amygdala is required for conditioned taste aversion. Neuroscience Letters, 740, 135466. https://doi.org/10.1016/j.neulet.2020.135466

    Nachman, M. (1970). Learned taste and temperature aversions due to lithium chloride sickness after temporal delays. J Comp Physiol Psychol, 73(1), 22-30. https://doi.org/10.1037/h0029807
    Nachman, M., & Ashe, J. H. (1973). Learned taste aversions in rats as a function of dosage, concentration, and route of administration of LiCl. Physiology and Behavior, 10(1), 73-78. https://doi.org/10.1016/0031-9384(73)90089-9

    Nasrallah, F. A., Tan, J., & Chuang, K. H. (2012). Pharmacological modulation of functional connectivity: α2-adrenergic receptor agonist alters synchrony but not neural activation. NeuroImage, 60(1), 436-446. https://doi.org/10.1016/j.neuroimage.2011.12.026

    Nelson, L. E., Lu, J., Guo, T., Saper, C. B., Franks, N. P., & Maze, M. (2003). The alpha2-adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 98(2), 428-436. https://doi.org/10.1097/00000542-200302000-00024

    Pawela, C. P., Biswal, B. B., Cho, Y. R., Kao, D. S., Li, R., Jones, S. R., Schulte, M. L., Matloub, H. S., Hudetz, A. G., & Hyde, J. S. (2008). Resting-state functional connectivity of the rat brain. Magnetic Resonance in Medicine, 59(5), 1021-1029. https://doi.org/10.1002/mrm.21524

    Paxinos, G., & Watson, C. (2007). The rat brain in stereotaxic coordinates (6th edition ed.). Elsevier.

    Polster, M. R., McCarthy, R. A., O'Sullivan, G., Gray, P. A., & Park, G. R. (1993). Midazolam-induced amnesia: implications for the implicit/explicit memory distinction. Brain and Cognition, 22(2), 244-265. https://doi.org/10.1006/brcg.1993.1037

    Pryor, K. O., Reinsel, R. A., Mehta, M., Li, Y., Wixted, J. T., & Veselis, R. A. (2010). Visual P2-N2 complex and arousal at the time of encoding predict the time domain characteristics of amnesia for multiple intravenous anesthetic drugs in humans. Anesthesiology, 113(2), 313-326. https://doi.org/10.1097/ALN.0b013e3181dfd401

    R Core Team. (2022). R: A language and environment for statistical computing.  https://www.R-project.org/.

    Rabin, B. M., & Rabin, J. S. (1984). Acquisition of radiation- and lithium chloride-induced conditioned taste aversions in anesthetized rats. Animal Learning & Behavior, 12(4), 439-441. https://doi.org/10.3758/BF03199991

    Reade, M. C., Eastwood, G. M., Bellomo, R., Bailey, M., Bersten, A., Cheung, B., Davies, A., Delaney, A., Ghosh, A., van Haren, F., Harley, N., Knight, D., McGuiness, S., Mulder, J., O'Donoghue, S., Simpson, N., & Young, P. (2016). Effect of dexmedetomidine added to standard care on ventilator-free time in patients with agitated delirium: a randomized clinical trial. Journal of the American Medical Association, 315(14), 1460-1468. https://doi.org/10.1001/jama.2016.2707

    Reasor, J. D., & Poe, G. R. (2008). Learning and memory during sleep and anesthesia. International Anesthesiology Clinics, 46(3), 105-129. https://doi.org/10.1097/AIA.0b013e318181e513

    Reimann, H. M., & Niendorf, T. (2020). The (un)conscious mouse as a model for human brain functions: key principles of anesthesia and their impact on translational neuroimaging. Frontiers in Systems Neuroscience, 14, 8. https://doi.org/10.3389/fnsys.2020.00008

    Riley, A. L., & Mastropaolo, J. P. (1989). Long-delay taste aversion learning: Effects of repeated trials and two-bottle testing conditions. Bulletin of the Psychonomic Society, 27(2), 145-148. https://doi.org/10.3758/BF03329924

    Roll, D. L., & Smith, J. U. (1972). Conditioned taste aversion in anesthetized rats. In M. E. P. Seligman & J. L. Hager (Eds.), Biological Boundaries of Learning (pp. 98-102). Appleton-Century-Crofts.

    Savola, M. K., MacIver, M. B., Doze, V. A., Kendig, J. J., & Maze, M. (1991). The alpha 2-adrenoceptor agonist dexmedetomidine increases the apparent potency of the volatile anesthetic isoflurane in rats in vivo and in hippocampal slice in vitro. Brain Research, 548(1-2), 23-28. https://doi.org/10.1016/0006-8993(91)91101-6

    Schafe, G. E., Thiele, T. E., & Bernstein, I. L. (1998). Conditioning Method Dramatically Alters the Role of Amygdala in Taste Aversion Learning. Learning & Memory, 5(6), 481-492. https://doi.org/10.1101/lm.5.6.481

    Schultz, D. H., & Helmstetter, F. J. (2010). Classical conditioning of autonomic fear responses is independent of contingency awareness. Journal of Experimental Psychology: Animal Behavior Processes, 36(4), 495-500. https://doi.org/10.1037/a0020263

    Segal, I. S., Vickery, R. G., Walton, J. K., Doze, V. A., & Maze, M. (1988). Dexmedetomidine diminishes halothane anesthetic requirements in rats through a postsynaptic alpha 2 adrenergic receptor. Anesthesiology, 69(6), 818-823. https://doi.org/10.1097/00000542-198812000-00004

    Sellers, K. K., Bennett, D. V., Hutt, A., Williams, J. H., & Fröhlich, F. (2015). Awake vs. anesthetized: layer-specific sensory processing in visual cortex and functional connectivity between cortical areas. Journal of Neurophysiology, 113(10), 3798-3815. https://doi.org/10.1152/jn.00923.2014

    Sinclair, M. D. (2003). A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small animal practice. Canadian Veterinary Journal, 44(11), 885-897.

    Steiner, A. R., Rousseau-Blass, F., Schroeter, A., Hartnack, S., & Bettschart-Wolfensberger, R. (2020). Systematic review: anaesthetic protocols and management as confounders in rodent blood oxygen level dependent functional magnetic resonance imaging (BOLD fMRI)-part A: effects of changes in physiological parameters. Frontiers in Neuroscience, 14, 577119. https://doi.org/10.3389/fnins.2020.577119

    Wehrman, J. J., Chung, C. C., & Sanders, R. (2023). Anaesthetics and time perception: A review. Q J Exp Psychol (Hove), 17470218221144614. https://doi.org/10.1177/17470218221144614

    Weinberger, N. M., Gold, P. E., & Sternberg, D. B. (1984). Epinephrine enables Pavlovian fear conditioning under anesthesia Science, 223(4636), 605-607. https://doi.org/10.1126/science.6695173

    Welzl, H., D'Adamo, P., & Lipp, H.-P. (2001). Conditioned taste aversion as a learning and memory paradigm. Behavioural Brain Research, 125(1), 205-213. https://doi.org/https://doi.org/10.1016/S0166-4328(01)00302-3

    Williams, C. L., Men, D., Clayton, E. C., & Gold, P. E. (1998). Norepinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: contribution of the nucleus of the solitary tract. Behavioral Neuroscience, 112(6), 1414-1422. https://doi.org/10.1037//0735-7044.112.6.1414

    Yamamoto, T., Fujimoto, Y., Shimura, T., & Sakai, N. (1995). Conditioned taste aversion in rats with excitotoxic brain lesions. Journal of Neuroscience Research, 22(1), 31-49. https://doi.org/10.1016/0168-0102(95)00875-t

    Yang, Y. L., Chao, P. K., & Lu, K. T. (2006). Systemic and intra-amygdala administration of glucocorticoid agonist and antagonist modulate extinction of conditioned fear. Neuropsychopharmacology, 31(5), 912-924. https://doi.org/10.1038/sj.npp.1300899

    Yasoshima, Y., Scott, T. R., & Yamamoto, T. (2006). Memory-dependent c-Fos expression in the nucleus accumbens and extended amygdala following the expression of a conditioned taste aversive in the rat. Neuroscience, 141(1), 35-45. https://doi.org/10.1016/j.neuroscience.2006.03.019

    Zhang, F., Feng, X., Zeng, Q., Wang, B., Wilhelmsen, K., Li, Q., Cao, X., & Yu, B. (2014). Sevoflurane induced amnesia inhibits hippocampal Arc expression partially through 5-hydroxytryptamine-7 receptors in the bilateral basolateral amygdala in rats. Neuroscience Letters, 562, 13-18. https://doi.org/10.1016/j.neulet.2013.12.066

    Zhao, F., Zhao, T., Zhou, L., Wu, Q., & Hu, X. (2008). BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. NeuroImage, 39(1), 248-260. https://doi.org/10.1016/j.neuroimage.2007.07.063

    無法下載圖示 校內:2026-08-31公開
    校外:2026-08-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE