研究生: |
葉怡嘉 Yeh, I-chia |
---|---|
論文名稱: |
雷射輔助式奈米壓印之熱傳導與變形問題模擬 Numerical Simulation of Coupled Temperature-Deformation Problem on Laser-Assisted Direct Imprinting |
指導教授: |
林育芸
Lin, Yu-Yun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 84 |
中文關鍵詞: | 壓印 、反射 、有限元素法 、熔融 |
外文關鍵詞: | finite element method, molten, reflectance, imprint |
相關次數: | 點閱:71 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要建立二維有限元素分析模型,模擬雷射輔助式奈米壓印過程中,雷射照射於矽底材使之熔融並因為預施壓力使矽底材與石英模具接觸產生變形。在此二維耦合溫度-位移之模型中,雷射照射於矽底材使矽底材熔融後,我們針對液態矽及固態矽分別計算其吸收之熱源大小,利用自設副程式將熱源與分析模型結合。同時以雙層黏塑材料模型描述矽底材在高溫及熔融後之黏滯性質。利用此數值模型,可探討石英模具對熱傳導行為及熔融情形的影響;模型中分別利用體熱通量與表面熱通量來設定熱源,並探討此兩種設定情形對模擬溫度場變化及壓印過程之影響。本文之數值模擬結果可作為實驗結果之比對,亦可提供將來實驗參數設定之參考。
We developed a two-dimensional finite element model to simulate the melt of silicon substrate caused by the excimer laser, and the deformation of molten silicon due to the contact between the pre-loaded quartz mold and silicon in Laser-Assisted Direct Imprinting (LADI) process. In this two-dimensional coupled temperature-displacement model, we calculate the heat source absorbed by solid silicon and liquid silicon after the melting of silicon substrate caused by irradiation of the excimer laser. A user subroutine was used to incorporate the heat source into the model. A two-layer viscoplasticity model was used to describe the viscosity of silicon at the high temperature and at the molten state. Using this model, the effects of quartz mold on the transient process of heat transfer and molten depth were studied. The heat source provided by the excimer laser was incorporated through the body heat flux and surface heat flux respectively into the FEM model, and the effects of these two types of heat source on the temperature filed and deformation during LADI process were studied. The results of our simulation can be used to compare with the experimental results, and provide more information for better parameter setting in experiments.
[1]ABAQUS 6.5 User’s Manual.
[2]A. Bejan, Heat Transfer, John Wiley & Sons, Inc., New York (1993).
[3]R. Cerny, R. Sasik, I. Lukes, V. Chab, “Excimer-laser-induced melting and solidification of monocrystalline Si: Equilibrium and nonequilibrium models”, Physical Review B, Vol.44, No.9, pp.4097-4102 (1991).
[4]S. Y. Chou, C. Keimei, J. Gu, “Ultrafast and direct imprint of nanostructure in silicon”, Nature, Vol.417, pp.835-837 (2002).
[5]S. Deunamuno, E. Fogarassy, “A thermal description of the melting of c- and a-silicon under pulsed excimer lasers”, Applied Surface Science, Vol.36, pp.1-11 (1989).
[6]M. S. K. Fuchs, “Optical properties of liquid silicon: the integral equation approach”, Journal of Physics-Condensed Matter12, pp.4341-4351 (2000).
[7]O. S. Heavens, Optical properties of thin solid films, New York :Dover Publications (1965).
[8]Y. Hirai, M. Fujiwara, T. Okuno, Y. Tanaka, M. Endo, S. Irie, K. Nakagawa, M. Sasago, “Study of the resist deformation in nanoimprint lithography”, Journal of Vacuum Science & Technology B, Vol.19, No.6, pp.2811-2815 (2001).
[9]Y. Hirai, S. Yoshida, N. Takagi, “Defect analysis in thermal nanoimprint lithography”, Journal of Vacuum Science & Technology B, Vol.21, No.6, pp.2765-2770 (2003).
[10]F. B. Hsiao, C. P. Jen, D. B. Wang, C. H. Chuang, Y. C. Lee, C. P. Liu, H. J Hsu, “An analytical modeling of heat transfer for laser-assisted nanoimprinting processes”, Computational Mechanics, Vol.37, pp.173-181 (2005).
[11]F. B. Hsiao, D. B. Wang, C. P. Jen, “Numerical investigation of thermal contact resistance between the mold and substrate on laser-assisted imprinting fabrication”, Numerical Heat Transfer Part A-Applications, Vol.49, pp. 669-682 (2006).
[12]http://rpv.iaa.ncku.edu.tw/nano/wellcome.htm
[13]A. Lazaridis, “A numerical solution of the multidimensional solidification (or melting) problem”, International Journal of Heat and Mass Transfer, Vol.13, pp.1459-1477 (1970).
[14]D. R. Lide, CRC handbook of chemistry and physics, 84th ed, Cleveland, Ohio: CRC Press (2003).
[15]C. Lu, Y. J. Juang, L. J. Lee, D. Grewell, A. Benatar, “Analysis of laser/IR-assisted microembossing”, Polymer Engineering and Science, pp.661-668 (2005).
[16]S. Nishimura, S. Matsumoto, K. Terashima, “Variation of silicon melt viscosity with boron addition”, Journal of Crystal Growth,Vol.237-239, pp.1667-1670 (2002).
[17]F. L. Pedrotti, L. S. Pedrotti, Introduction to Optics, N.J., Prentice Hall (1993).
[18]A. Sassaroli, S. Fantini, “Comment on the modified Beer-Lambert law for scattering media”, Physics in Medicine and Biology, Vol.49, pp.255-257 (2004).
[19]V. N. Tokarev, A. F. H. Kaplan, “An analytical modeling of time dependent pulsed laser melting”, Journal of Applied Physics, Vol.86, No.5, pp. 2836-2846 (1999).
[20]R. F. Wood, G. E. Giles, “Macroscopic theory of pulsed-laser annealing. I. Thermal transport and melting”, Physical Review B, Vol.23, No.6, pp.217-230 (1981).
[21]M. Worgull, M. Heckele, J. F. He’tu, K. K. Kabaneemi, “Modeling and optimization of the hot embossing process for micro- and nanocomponent fabrication”, Journal of Microlithography Microfabrication and Microsystems, Vol.88, pp.0831121-1~083112-3 (2006).
[22]Q. Xia, C. Keimei, H. Ge, Z. Yu, W. Wu, S. Y. Chou, “Ultrafast patterning of nanostructure in polymers using laser assisted nanoimprint lithography”, Applied Physics Letters, Vol.83, No.12, pp.4417-4419 (2003).
[23]W. B. Young,“Analysis of the nanoimprint lithography with a viscous model”, Microelectronic Engineering, Vol.77, pp.405-411 (2005).
[24]張文哲,“奈米壓印數值模擬與分析”,國立成功大學土木工程學系,碩士論文,(2006)。
[25]鍾明宏,“準分子雷射作用下矽基板之熔融現象之理論與實驗探討”,國立成功大學機械工程學系,碩士論文,(2006)。