| 研究生: |
林宏政 Lin, Hung-Cheng |
|---|---|
| 論文名稱: |
以高分子球製備NiO/YSZ複合氧化物規則性巨孔結構之研究 Preparation of Ordered Macroporous NiO/YSZ Structure by Polymer Spheres |
| 指導教授: |
方冠榮
Fung, Kuan-Zong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 高分子球 、巨孔 |
| 外文關鍵詞: | macroporous, polymer sphere |
| 相關次數: | 點閱:49 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
固態氧化物燃料電池和其它發電技術相比較具有高效率、無噪音、低污染等優點。在固態氧化物燃料電池結構中,具有規則性的孔洞有助於氣體的傳送及提升其反應速率,本研究主要是將單分散的PMMA球在沈積時利用重力沈澱的方式規則排列後,以灌注的方法灌入NiO/YSZ前驅物溶液,再經過熱處理移除PMMA球來得到規則性的巨孔結構,同時探討PMMA球的尺寸大小、溫度和還原氣氛對於結構的影響。
結果顯示,利用分散聚合法在以PVP、PAA和PDMS為穩定劑時可分別製備出直徑6.4μm、5.2μm和1.2μm的單分散PMMA球,而利用無乳化劑的乳化聚合法可合成出直徑0.45μm的單分散PMMA球。在利用重力沈澱的方式下,直徑1.2μm和0.45μm的PMMA球都能形成三維規則性的排列。在灌入前驅物溶液後加熱至380℃時,PMMA球已完全被移除掉,經過800℃煆燒後,當以直徑4.2μm和6.4μm的PMMA球為模板時分別可得到孔徑2.4μm和孔徑3.36μm的NiO/YSZ巨孔結構,孔洞的排列並不規則。而以直徑1.2μm和0.45μm的PMMA球為模板時可得到三維規則性的巨孔結構,孔徑分別為0.81μm和0.3μm,利用氮氣等溫吸附/脫附分析孔徑為0.3μm的巨孔結構得到BET比表面積為18.66m2/g。
在經過1300℃4小時的燒結後,以直徑6.4μm的PMMA球為模板所製備的NiO/YSZ巨孔結構已完全消失,然而在1200℃的溫度下,NiO/YSZ仍可維持其巨孔結構,當NiO/YSZ中氧化鎳的體積比含量達80%時,整個結構在經過800℃6小時的還原處理後由於氧化鎳還原成鎳金屬,體積減少40%,同時形成孔洞結構使機械強度明顯降低,無法維持結構完整性,因此以PMMA球移除法來獲得完整的多孔質結構及Ni/YSZ多孔結構最初NiO/YSZ比例必須低於60%才可維持結構完整性。
Among several advanced energy technologies, SOFC have many advantages such as higher efficiency, low pollution, no noise, etc. In the sturcture of SOFC, ordered porous structure will enhance the transport of gas and then facilitate the electrochemical reaction. In this study, the monodisperse PMMA spheres were orderly compacted by gravitation method.The interstices between PMMA spheres were filled with NiO/YSZ precursor by impregnation method. Subsequently, NiO/YSZ with ordered and porous structure was obtained by removing the PMMA spheres followed heat treatment at 800℃.
In this study,the effect of heat-treatment temperature and the reducing atmosphere on the macroporous structure of NiO/YSZ was disccused. The result shows that the monodisperse PMMA spheres with diameters of 4.2μm, 6.4μm, and 1.2μm were prepared by dispersion polymerization method when PAA, PVP and PDMS as stabilizer were used individually. The PMMA spheres with diameter of 0.45μm were prepared by emusifier-free emulsion polymeriztion method. When using the gravitation method, PMMA spheres with diameters of 1.2μm and 0.45μm could form the 3-D ordered array. After filling PMMA spheres with diameters of 4.2μm and 6.4μm with precursor and followed by calcination at 800℃, the pore diameter of macroporous NiO/YSZ macroporous structure were estimated to be 2.4μm and 3.36μm respectively. When using the PMMA spheres with diameter of 1.2μm and 0.45μm PMMA spheres as templates, the 3-D oredred macroporous structure with diameters of 0.81μm and 0.3μm was obtained. The BET specific surface area of macroporous NiO/YSZ with pore diameter of 0.3μm was found to be 18.66m2/g.
After sintering at 1300℃ for 4h, the macroporus structure of NiO/YSZ collapsed due to the minimization of surface tension. However, the macroporous structure of NiO/YSZ remained stable at 1200℃. Due to the volume reduction accompanied the reduction of NiO into metallic Ni, the strength of macroporous Ni/YSZ is lower than its oxide counterpart. Thus, the ratio of NiO/YSZ should be less than 60% in order to obtain a desired macroporous Ni/YSZ structure using PMMA spheres as a template.
1. N. Q. Minh, J. Am. Ceram. Soc., 76, (1993) 563.
2. W. R. Grove, Philos. Mag., 14, (1839) 127.
3. K. Kordesch and G. Simader, Fuel cells and their applications, pp.51-166.
4. S. C. Singhal, MRS Bulletin, March, (2000) 16.
5. K. Z. Fung, H. D. Baek, and A. V. Virkar, Solid State Ionics, 52, (1992) 199.
6. T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, and Y. Takita, J. Am. Ceram. Soc., 145, (1993) 3177.
7. W. Z. Zhu and S. C. Deevi, Mater. Sci. & Eng., A362, (2003) 228.
8. H. Uchida, M. Sugimoto, and M. Watanabe, Proceeding of the Seventh International Symposium on Solid Oxide Fuel Cells (SOFC-VI), Tsukuba, Ibaraki, Japan, (2001) 653.
9. O. A. Marina, C. Bagger, S. Primdahl, and M. Mogensen, Solid State Ionics, 123, (1999) 199.
10. O. A. Marina, N. L. Canfield, and J. W. Stevenson, Solid State Ionic, 149, (2002) 21.
11. S. P. Simmer, J. F. Bonnett, N. L. Canfield, K. D. Meinhardt, J. P. Shelton, V. L. Sprenkle, and J. W. Stevenson, J. Power Sources, 113, (2003) 1.
12. O. Yamamoto, Y. Takeda, R. Kanno, and M. Noda, Solid State Ionics, 22, (1987) 241.
13. B. C. H. Steele, Solid State Ionics, 86-88, (1996) 1223.
14. J. Liggat, in Polymer Handbook, ed. J. Brandrup, E. H. Immergut and E. A. Grulke, New York, 1999.
15. H. Yan, C. F. Blanford, B. T. Holland, W. H. Smyrl and A. Stein, Chem. Mater., 12, (2000), 1134.
16. S. Shen, E. D. Sudol, M. S. EL-Aasser, J. Polym. Sci., Part A: Polym. Chem., 32, (1994) 1087.
17. C. M. Tseng, Y. Y. Lu, M. S. El-Aasser, and J. W. Vanderhoff, J. Polym. Sci. Polym. Chem. Ed., 24, (1986) 2995.
18 A. J. Paine, Macromolecules, 20, (1990) 3109.
19. Y. Y. Lu, Ph.D. dissertation, Lehigh University, Bethlehem, PA, 1988.
20. M. A. Cohen-Stuart, F. H. W. H. Waajen, T. Cosgrove, B. Vincent, and T. L. Crowley, Macromolecules, 17, (1984) 1825.
21. I. W. Kellaway and N. M. Najib, Int. J. Pharm., 6, (1980) 285.
22. M. A. Cohen-Stuart, G. J. Fleer, and B. H. Bijsterbosch, J. Colloid Interface Sci., 90, (1982) 1465.
23. M. Kawaguchi, K. Hayakawa, and A. Takahashi, Macromolecules, 16, (1983) 1465.
24. C. M. Tseng, Ph.D. dissertation, Lehigh University, Bethlehem, PA, 1984.
25. S. Shen, E. D. Sudol, and M. S. El-Aasser, J. Polym. Sci. Part A: Polym. Chem., 31, (1993) 1393.
26. K. Cao, J. Yu, B. Li, and Z. Pan, Chem. Eng. J., 78, (2000), 211.
27. S. M. Klein, V. N. Manoharan, D. J. Pine, and F. F. Lange, Colloid Polym. Sci., 282, (2003), 8
28. M. Chainey, J. Hearn, and M. C. Wilkinson, J. Polym. Sci. Part A: 69
Polym. Chem., 25, (1987), 505.
29. D. Zou, S. Ma, R. Guan, M. Park, L. Sun, J. J. Aklonis, and R. Salovey, J. Polym. Sci. Part A: Polym. Chem., 30, (1992), 137.
30. J. V. Sanders, Nature, 204, (1964), 1151.
31. Xia Y., B. Gates, Y. Yin., Adv. Mater., 12, (2000), 693.
32. N. A. Clark, A. J. Hurd, B. J. Ackerson, Nature, 281, (1979), 57
33. F. Meseguer, A. Blanco, H. Miguez, Colloids and Surf. A: Physicochem. Eng. Aspects, 282, (2002), 281.
34. H. Miguez, F. Meseguer, C. Lopez, Langmuir, 13, (1997), 6009.
35. H. Miguez, F. Meseguer, C. Lopez, Adv. Mater., 10, (1998). 480.
36. R. Magoral, J. Requena, J. S. Moya, Adv. Mater., 9, (1997), 257.
37. C. Lopez, L. Vazquez, F. Meseguer, Superlattices Microstruct., 22, (1997), 399.
38. P. Ni, P. Dong, B. Cheng, Adv. Mater., 13, (2001), 437
39. A. S. Dimitrov, K. Nagayama, Langmuir, 12, (1996), 1303.
40. N. D. Denkov, O. D. Velev, P. A. Kralchevsky, Nature, 361, (1993), 26.
41.. P. Jiang, J. F. Bertone, K. S. Hwang, Chem. Mater., 11, (1999), 2132.
42 Y. A. Vlasov, X. Z. Bo, J. C. Sturm, Nature, 414, (2001), 289.
43. J. D. Joannnopoulos, Nature, 414, (2001), 257.
44. Y. H. Ye, F. LeBlanc, A. Heche, Appl. Phys. Lett., 78, (2001), 52.
45 Liggat, J. In Polymer Handbook; Brandrup, J., Immergut, E. H., 70 Grulke, E. A., Eds.; Wiley: New York, 1999.