簡易檢索 / 詳目顯示

研究生: 李芷綾
Lee, Chih-Ling
論文名稱: 能源政策發展下電動及燃油汽車生命週期評估
Life cycle assessment of electric and internal combustion engine vehicles under the development of energy policy
指導教授: 林心恬
Lin, Hsin-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 57
中文關鍵詞: 電動汽車燃油汽車生命週期評估溫室氣體再生能源發展
外文關鍵詞: electric vehicle, internal combustion engine vehicle, life cycle assessment, greenhouse gas, renewable energy development
相關次數: 點閱:212下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據我國行政院環保署提供之國家溫室氣體排放清冊報告,得知2019年臺灣各部門能源燃燒排放CO2占比,運輸部門占能源相關二氧化碳排放總量的13.90%(36.238 MtCO2e),為溫室氣體排放第三大宗項目,而公路運輸排放量主要來源為小客車約占50.71%。另外,根據經濟部能源局報導提到相較於2018年,運輸部門是唯一碳排放增加的部門,排放增加0.6%,約21萬公噸,主要是因公路汽柴油消費增加,進而帶動公路排放量,故未來溫室氣體減量方面可從推廣電動汽機車著手。
    本研究應用生命週期評估從搖籃到大門的角度量化電動及燃油汽車的潛在溫室氣體排放影響,並在使用階段中以氣候變遷因應法及巴黎協定中的淨零排放作為能源情境設定,以及探討各國電力組成得知再生能源與推廣電動車關聯性,研究結果顯示車輛使用階段所排放之溫室氣體占全生命週期最大宗,其次為材料生產階段,另外,於車輛總數預測得知電動汽車初期成長緩慢,後期因2040年燃油車禁售政策及相關推動政策而加速成長,最後探討不同能源情境下,車輛至2050年碳排放年度變化,預估電動車最大減碳效益。

    According to the National Greenhouse Gas Emissions Inventory Report provided by the Environmental Protection Agency of Taiwan, it is known that in 2019, the proportion of CO2 emitted by energy combustion in various sectors, and the transportation sector accounted for 13.90% (36.238 MtCO2e)of the total energy-related carbon dioxide emissions, which are greenhouse gas(GHG)emissions. Therefore, in the future, the reduction of greenhouse gases can be started with the promotion of electric vehicles.
    This study applies life cycle assessment to quantify the potential greenhouse gas emissions impacts of electric and internal combustion engine vehicles from a cradle-to-gate perspective, uses Taiwan Climate Change Adaptation Policy and Net-zero emissions from the Paris Agreement assumption energy scenarios during the use phase, and explores the country's Electricity composition knows the relationship between renewable energy and the promotion of electric vehicles. The research results show that the greenhouse gas emissions during the vehicle use phase account for the largest part of the whole life cycle, followed by the material production stage. In addition, the forecast of the total number of vehicles shows that the growth of electric vehicles is slow in the early stage. In the later stage, the growth will be accelerated due to the ban of internal combustion engine vehicles in 2040 and related promotion policies. Finally, the annual changes in carbon emissions from vehicles to 2050 under different energy scenarios are discussed, and the maximum carbon reduction benefit of electric vehicles is estimated.

    摘要 I 致謝 V 目錄 VI 表目錄VIII 圖目錄IX 第一章 緒論1 1.1研究背景與動機1 1.2研究目的3 1.3研究流程4 第二章 文獻回顧6 2.1 各國電動車相關政策6 2.2 台灣電動車產業現況10 2.3 台灣再生能源發展現況12 2.4 台灣減碳政策14 2.4.1 再生能源發展條例14 2.4.2 氣候變遷因應法14 2.5 生命週期評估(Life Cycle Assessment, LCA) 16 第三章 研究方法20 3.1 目標範疇界定20 3.2 生命週期盤查22 3.2.1 車輛基本簡介22 3.2.2 電動及燃油汽車材料組成22 3.3 電力組成情景設置24 3.4 碳排放預測30 3.4.1生產階段碳排放30 3.4.2 液體生產階段碳排放31 3.4.3 使用階段碳排放計算32 3.5車輛總數預測33 第四章 結果與討論34 4.1 材料生產階段34 4.1.1材料碳排放分析34 4.1.2 材料碳排放占比組成35 4.1.3組裝階段及車輛液體生產相關碳排放36 4.2 使用階段37 4.2.1 各國不同電力情景下GHG排放37 4.2.3台灣不同電力組成下GHG排放貢獻39 4.3.4 不同電力組成下各別每公里行駛GHG排放量41 4.3預估至2050年碳排放42 4.3.1車輛總數預測42 4.3.2至2050年碳排放預測44 4.4車輛生命週期排放48 第五章 結論與建議49 5.1 結論49 5.2 建議50 參考文獻51 附錄一 各材料製程54

    1. 维基百科. 台灣能源. 2021; Available from: https://zh.wikipedia.org/w/index.php?title=%E5%8F%B0%E7%81%A3%E8%83%BD%E6%BA%90&oldid=67244592.
    2. Toyota官方網站, https://www.toyota.com.tw/.
    3. 台灣電力公司. 歷年發購電量與結構. 2022.
    4. 交通部統計查詢網. https://stat.motc.gov.tw/mocdb/stmain.jsp?sys=100.
    5. 交通部運輸研究所, 運輸部門溫室氣體減量策略成效研析. 2020.
    6. 行政院國家發展委員會, 臺灣2050淨零排放路徑及策略總說明. 2022/03/30.
    7. 行政院環境保護署, 中華民國國家溫室氣體排放清冊報告. 2021.
    8. 行政院環境保護署. 溫室氣體減量及管理法. 2022.
    9. 特斯拉官方網站, https://www.tesla.com/zh_tw.
    10. 經濟部, 能源發展綱領(核定版). 2017.
    11. 經濟部, 電動汽車充電基礎設施推動初步規畫草案. 2021/07/28.
    12. 經濟部能源局. 車輛能源效率管理. 2020.
    13. 經濟部能源局, 能源轉型白皮書(核定本). 2020.
    14. 經濟部能源局. 能源統計資訊查詢系統. 2022.
    15. Agency, E.E., Electric vehicles from life cycle and circular economy perspectives
    TERM 2018: Transport and Environment Reporting Mechanism (TERM) report. 2018.
    16. Agency, E.P., https://fueleconomy.gov/feg/Find.do?action=sbs&id=41416&id=41190. 2019.
    17. Agency, I.E., Energy Technology Perspectives. 2020.
    18. Agency, I.E. Global EV Policy Explorer. 2021.
    19. Agency, I.E., Global EV Outlook. 2021.
    20. Ajanovic, A. and R. Haas, Dissemination of electric vehicles in urban areas: Major factors for success. Energy, 2016. 115: p. 1451-1458.
    21. Bergero, C., et al., An integrated assessment of a low coal low nuclear future energy system for Taiwan. Energy and Climate Change, 2021. 2: p. 100022.
    22. Commission, E. https://ec.europa.eu/info/index_en. 2021.
    23. Contribution, S.b.R.o.C.T.I.N.D., https://ghg.tgpf.org.tw/files/team/Submissiom_by_Republic_of_China_(Taiwan)INDC.pdf. 2020.
    24. Ellingsen, L.A.-W., B. Singh, and A.H. Strømman, The size and range effect: lifecycle greenhouse gas emissions of electric vehicles. Environmental Research Letters, 2016. 11(5): p. 054010.
    25. Gui, G., Carbon Footprint Study of Tesla Model 3. E3S Web of Conferences, 2019. 136: p. 01009.
    26. Gustafsson, M., et al., Well-to-wheel greenhouse gas emissions of heavy-duty transports: Influence of electricity carbon intensity. Transportation Research Part D: Transport and Environment, 2021. 93: p. 102757.
    27. Hao, H., et al., Impact of recycling on energy consumption and greenhouse gas emissions from electric vehicle production: The China 2025 case. Resources, Conservation and Recycling, 2017. 122: p. 114-125.
    28. Hawkins, T.R., et al., Comparative Environmental Life Cycle Assessment of Conventional and Electric Vehicles. Journal of Industrial Ecology, 2013. 17(1): p. 53-64.
    29. Hou, F., et al., Comprehensive analysis method of determining global long-term GHG mitigation potential of passenger battery electric vehicles. Journal of Cleaner Production, 2021. 289: p. 125137.
    30. Kim, H.C. and T.J. Wallington, Life-Cycle Energy and Greenhouse Gas Emission Benefits of Lightweighting in Automobiles: Review and Harmonization. Environmental Science & Technology, 2013. 47(12): p. 6089-6097.
    31. Kim, H.C., et al., Cradle-to-Gate Emissions from a Commercial Electric Vehicle Li-Ion Battery: A Comparative Analysis. Environmental Science & Technology, 2016. 50(14): p. 7715-7722.
    32. Lab, G.C.D. https://ourworldindata.org/. 2020.
    33. Laboratory, A.N., https://greet.es.anl.gov/databases. 2020.
    34. Marques, P., et al., Comparative life cycle assessment of lithium-ion batteries for electric vehicles addressing capacity fade. Journal of Cleaner Production, 2019. 229: p. 787-794.
    35. Milev, G., A. Hastings, and A. Al-Habaibeh, The environmental and financial implications of expanding the use of electric cars - A Case study of Scotland. Energy and Built Environment, 2021. 2(2): p. 204-213.
    36. Morini, A.A., M.J. Ribeiro, and D. Hotza, Early-stage materials selection based on embodied energy and carbon footprint. Materials & Design, 2019. 178: p. 107861.
    37. Peng, T., X. Ou, and X. Yan, Development and application of an electric vehicles life-cycle energy consumption and greenhouse gas emissions analysis model. Chemical Engineering Research and Design, 2018. 131: p. 699-708.
    38. Pero, F.D., M. Delogu, and M. Pierini, Life Cycle Assessment in the automotive sector: a comparative case study of Internal Combustion Engine (ICE) and electric car. Procedia Structural Integrity, 2018. 12: p. 521-537.
    39. Qiao, Q., et al., Cradle-to-gate greenhouse gas emissions of battery electric and internal combustion engine vehicles in China. Applied Energy, 2017. 204: p. 1399-1411.
    40. Sato, F.E.K., T. Furubayashi, and T. Nakata, Application of energy and CO2 reduction assessments for end-of-life vehicles recycling in Japan. Applied Energy, 2019. 237: p. 779-794.
    41. Sato, F.E.K. and T. Nakata, Analysis of the impact of vehicle lightweighting on recycling benefits considering life cycle energy reductions. Resources, Conservation and Recycling, 2021. 164: p. 105118.
    42. Tagliaferri, C., et al., Life cycle assessment of future electric and hybrid vehicles: A cradle-to-grave systems engineering approach. Chemical Engineering Research and Design, 2016. 112: p. 298-309.
    43. Turconi, R., A. Boldrin, and T. Astrup, Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations. Renewable and Sustainable Energy Reviews, 2013. 28: p. 555-565.
    44. Verma, S., G. Dwivedi, and P. Verma, Life cycle assessment of electric vehicles in comparison to combustion engine vehicles: A review. Materials Today: Proceedings, 2022. 49: p. 217-222.
    45. Wang, D., et al., Life cycle analysis of internal combustion engine, electric and fuel cell vehicles for China. Energy, 2013. 59: p. 402-412.
    46. Woo, J., H. Choi, and J. Ahn, Well-to-wheel analysis of greenhouse gas emissions for electric vehicles based on electricity generation mix: A global perspective. Transportation Research Part D: Transport and Environment, 2017. 51: p. 340-350.
    47. Yang, L., et al., Life cycle environmental assessment of electric and internal combustion engine vehicles in China. Journal of Cleaner Production, 2020: p. 124899.
    48. Yang, L., et al., Life cycle environmental assessment of electric and internal combustion engine vehicles in China. Journal of Cleaner Production, 2021. 285: p. 124899.
    49. Yang, Z., B. Wang, and K. Jiao, Life cycle assessment of fuel cell, electric and internal combustion engine vehicles under different fuel scenarios and driving mileages in China. Energy, 2020. 198: p. 117365.
    50. Yu, A., et al., Life cycle environmental impacts and carbon emissions: A case study of electric and gasoline vehicles in China. Transportation Research Part D: Transport and Environment, 2018. 65: p. 409-420.

    無法下載圖示 校內:2027-07-19公開
    校外:2027-07-19公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE