簡易檢索 / 詳目顯示

研究生: 魏子傑
Wei, Tzu-Chieh
論文名稱: 紊流狹長噴流衝擊冷卻半圓凹面之數值研究
Numerical Study of Turbulent Slot Jet Impingement Cooling on a Semi-Circular Concave Surface
指導教授: 楊玉姿
Yang, Yue-Tzu
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 107
中文關鍵詞: 數值模擬凹面狹長噴流衝擊冷卻紊流熱傳
外文關鍵詞: Impingement cooling, Turbulent heat transfer, Slot jet, Concave surface, Numerical simulation
相關次數: 點閱:81下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是針對狹長紊流噴流衝擊至等熱通量加熱半圓凹面的流場與熱傳特性進行數值研究。紊流統御方程式是以控制體積法為基礎,配合冪次法則有限差分法與著名的k-epson紊流模式及其相關之牆函數來求解與描述紊流結構。此外,本文採用實體吻合曲線座標系統將物理空間轉換至計算空間。
    數值計算採用以下參數,噴嘴出口雷諾數、無因次噴嘴到衝擊凹面距離H/B、無因次噴嘴寬度B/D以及熱通量。本文中所採用的理論模式經與文獻中已發表的實驗數據作數值預測值的確認。在此研究範圍中,除了無因次噴嘴到衝擊凹面距離H/B=0.5,其局部紐塞數 最大值出現偏移在S/B=1.5處,其餘H/B=4~12之局部紐塞數最大值均產生在停滯點,並沿半圓凹壁面逐漸減小。局部紐塞數之數值結果顯示合理的預測,最大誤差在15%內。當雷諾數固定時,除了低衝擊距離H/B=0.5外,衝擊距離H/B對於平均紐塞數來說的影響並不明顯。本研究對於狹長紊流噴流衝擊冷卻半圓凹面提供了基礎瞭解。

    The investigation of the flow field and heat transfer characteristics of a slot turbulent jet impinging on a semi-circular concave surface with uniform heat flux has been carried out numerically in this study. The turbulent governing equations are solved by a control-volume-based finite-difference method with power-law scheme and the well-know k-epson turbulence model and its associate wall function to describe the turbulent structure. In addition, body-fitted curvilinear coordinate system is employed to transform the physical domain into a computational domain.
    Numerical computations have been conducted with variations of jet exit Reynolds number, dimensionless jet-to-surface distance H/B, dimensionless jet width B/D and the heat flux. The theoretical model developed is validated by comparing the numerical predictions with available experimental data in the literature. In these studied ranges, the variations of local Nusselt numbers along the semi-circular concave surface decrease monotonically from its maximum value at the stagnation point except that at low H/B=0.5, the maximum Nu shift to S/B=1.5. The numerical results show that the local Nusselt numbers are reasonably predicted with a maximum discrepancy within 15%. As the Reynolds number fixes, the effect of the impingement distance (H/B) on the average Nusselt is not significant except at low H/B=0.5. This study provides fundamental insight into turbulent slot jet impingement cooling on the semi-circular concave surface.

    中文摘要……………………I 英文摘要………………II 誌謝…………………………IV 目錄……………………………V 表目錄……………………VIII 圖目錄……………………IX 符號說明…………………XV 第一章 緒論………………1 1-1 研究動機及背景……………1 1-2 文獻回顧……………………3 1-3 本文探討之主題及方法……6 第二章 理論分析…………………8 2-1 空間流場解析…………8 2-2 紊流模式…………11 2-3 邊界條件…………………19 2-4 局部紐塞數與壓力係數計算…22 2-5 統御方程式的轉換……………23 第三章 數值方法…………………30 3-1 概述…………………30 3-2 格點位置的配置………………31 3-3 差分方程式……………33 3-4 u、v動量方程式之差分方程式…9 3-4-1 phi之壓力修正方程式……………39 3-5 收斂標準……………42 3-6 差分方程式解法……43 3-6-1數值程序……44 3-6-2電腦計算時間……45 第四章 結果與討論…………………48 4-1網格獨立測試……49 4-2 流場特性分析…………52 4-2-1 速度向量分佈……52 4-2-2 紊流動能分佈……53 4-3 溫度場特性分析…………54 4-4 壓力特性分析………………57 第五章 結論與建議……………100 5-1 結論……………100 5-2 未來研究方向之建議……102 參考文獻…………………………104

    Agarwal, P.K., Bower, W.W., 1982. Navier-Stokes Computations of Turbulent Compressible Two-Dimensional Impinging Jet Flowfields. AIAA Journal 20, 577-584.

    Antonio, J., Muhammad M.R., John, E.L., 2000. Numerical Modeling of Conjugate Heat Transfer during Impingement of Free Liquid Jet Issuing from a Slot Nozzle. Numerical Heat Transfer 38, 45-66.

    Albert, Y.T., 2003. A numerical Study on the Hydrodynamics and Heat Transfer of a Circular Liquid Jet Impinging onto a Substrate. Taylor & Francis, Numerical Heat Transfer 44, 1-19.

    Bower, W.W., Kotansky, D.R., Hoffman, G.H., 1977. Computations and measurements of two-dimensional turbulent jet impingement flowfields. Symposium on Turbulent Shear Flows, State University, Pennsylvania, 3.1.~3.8.

    Cornaro, C., Fleischer, A.S., Goldstein, R.J., 1999. Flow visualization of a round jet impinging on cylindrical surfaces. Experimental Thermal and Fluid Science 20, 66-78.

    Choi, M., Yoo, H.S., Yang, G., Lee, J.S., Sohn D.K., 2000. Measurements of Impinging Jet Flow and Heat Transfer on a Semi-Circular Concave Surface. International Journal of Heat and Mass Transfer 43, 1811-1822.

    Elison, B., Webb, B.W., 1994. Local Heat Transfer to Impinging Liquid Jets in the Initially Laminar, Transitional, and Turbulent Regimes. International Journal of Heat and Mass Transfer 37, 1207-1216.

    Glauert, M.B., 1956. The Wall Jet. Journal of Fluid Mechanics 1, 625-643.

    Gardon, R., Akfirat, J.C., 1966. Heat Transfer Characteristics of Impinging Two-dimensional Air Jets. ASME, J. Heat Transfer 88, 101-108.

    Goldstein, R.J., Timmers, J.F., 1982. Visualization of Heat Transfer from Arrays of Impinging Jets. Int. J. Heat and Mass Transfer 25, 1857-1868.

    Goldstein, R.J., Sobolik, K.A., Sool, W.S., 1990. Effect of Entrainment on the Heat Transfer to A Heated Circular Air Jet Impinging on a Flat Surface. Transactions of the ASME 112, 608-611.

    Gau, C., Chung, C.M., 1991. Surface Curvature Effect on Slot-Air-Jet Impingement Cooling Flow and Heat Transfer Process. Journal of Heat Transfer 113, 858-864.

    Jayatilleke, C.L., 1969. The Influence of Prandtl Number and Surface Roughness on the Resistance of the Laminar Sublayer to Momentum and Heat Transfer. Heat Mass Transfer 1, 193-329.

    Kennard, E.H., 1938. Kinetic Theory of Gases. McGraw-Hill Book Co. New York.

    Launder, B.E., Spalding, D.B., 1972. The Numerical Computation of Turbulent Flow. Computer Method in Applied Mechanics and Engineering 3, 269-289.

    Liu, X., Lienhard, J.H., Lombara, J.S., 1991. Convective Heat Transfer by Impingement of Circular Liquid Jets. Journal of Heat Transfer 113, 571-582.

    Lee, D.H., Chung, Y.S., Kim, D.S., 1997. Turbulent flow and heat transfer measurements on a curved surface with a fully developed round impinging jet. International Journal Heat and Fluid Flow 18, 160-169.

    Lee, D.H., Chung, Y.S., Won, S.Y., 1999. The effect of concave curvature on heat transfer from a fully developed round impinging jet. International Journal of Heat and Mass Transfer 42, 2489-2497.

    Martin, H., 1977. Heat and Mass Transfer between Impinging Gas Jet and Solid Surfaces. Advances in Heat Transfer 13, 1-60.

    Ma, C.F., Zhuang, Y., Lee, S.C., Gomi, T., 1997. Impingement Heat Transfer and Recovery Effect with Submerged Jets of Large Prandtl Number Liquid-II. Initially Laminar Confined Slot Jets. International Journal of Heat and Mass Transfer 40, 1491-1500.

    Patankar, S.V., 1980. Numerical Heat Transfer and Fluid Flow. Chap. 5-6, 79-135, 1980.

    Sherif, S.A., Pletcher, R.H., 1989. Measurements of the Thermal Characteristics of Heated Turbulent Jets in Cross flow. J. Heat Transfer 111, 897-903.

    Siba Erick A., Ganesa Pillai, M. Kendall Harris, T., Haji Sheikh, A., 2003. Heat Transfer in a High Turbulence Air Jet Impinging Over a Flat Circular Disk. Journal of Heat Transfer 125, 257-264.

    Womac, D.J., Ramadhyani, S., Incropera, F.P., 1993. Correlating Equation for Impingement Cooling of Small Heat Source With Single Circular Liquid Jets. Transactions of the ASME 115, 106-115.

    Yang, G., Choi, M., Lee, J.S., 1999. An Experimental Study of Slot Jet Impingement Cooling on Concave Surface: Effects of Nozzle Configuration and Curvature. International Journal of Heat and Mass Transfer 42, 2199-2209.

    Yang, Y.T., Hwang, C.H., 2004. Numerical Simulations on the Hydrodynamics of a Turbulent Slot Jet Impinging on a Semi-Cylindrical Convex Surface. Numerical Heat Transfer 46, 955-1008.

    下載圖示 校內:2009-07-04公開
    校外:2011-07-04公開
    QR CODE