簡易檢索 / 詳目顯示

研究生: 賀若涵
He, Jo-Han
論文名稱: 微氣閥與微流體元件整合之自動化細胞篩選系統
Automated Cell Sorting System Integrating Microvalves and Microfluidic Devices
指導教授: 葉思沂
Yeh, Szu-I
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 139
中文關鍵詞: 微氣動閥微流體晶片細胞分選單細胞液珠包覆
外文關鍵詞: Micro pneumatic valves, microfluidic chips, cell sorting, single-cell droplet encapsulation
相關次數: 點閱:41下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗旨在開發一種整合微氣閥與微流體元件的自動化細胞篩選系統,以分選活酵母菌和死酵母菌。系統中,螢光粒子模擬活酵母菌,標準粒子模擬死酵母菌,氣體作為連續相,粒子溶液作為分散相。利用氣體包覆生成液珠,將粒子包覆在液珠中進行隔離。通過影像辨識技術偵測液珠並將訊號回傳給微流體晶片中的微氣動閥,以控制液珠的移動並達到分類效果,從而分離含有螢光粒子和標準粒子的液珠,獲得高純度的螢光粒子溶液。
    實驗結果顯示,在微氣動閥與Y字形分岔流道的幾何設計下,當微氣動閥氣壓為0.28 MPa時,液珠以0 %的分類異常率進入未啟動閥的流道出口,且經由測試發現此晶片可持續使用3.5小時以上。
    實驗還發現,使用Pluronic F-127進行改質時,粒子與液珠不會黏附於流道,且粒子溶液能穩定生成液珠。
    經PVA與Pluronic F-127改質後的偵測結果顯示,移動速度較慢的截斷式液珠相比滴落型液珠更易被辨識。雖需加入界面活性劑以穩定截斷式液珠的生成,但實驗結果顯示,截斷式液珠更適合用於自動化影像辨識分選技術中。
    最終測試結果顯示,採用PVA改質的流道時,螢光粒子的分類準確率可達90.43%,目標區螢光粒子濃度達61.23%,提升31.45%,而廢棄區螢光粒子純度降至5.52%,下降24.26%。這些結果表明,該系統具有顯著的分類效果,並在細胞篩選中具有很大的應用潛力。

    This experiment aims to develop an automated cell sorting system by integrating micro pneumatic valves with microfluidic components to sort live and dead yeast cells. In this system, fluorescent particles simulate live yeast cells, while standard particles represent dead yeast cells. The gas acts as the continuous phase, and the particle solution serves as the dispersed phase. By utilizing gas to encapsulate the particles within droplets, the system isolates them for sorting. Image recognition technology is employed to detect the droplets, and the signals are transmitted to the micro pneumatic valves on the microfluidic chip to control the movement of the droplets, thus separating the droplets containing fluorescent particles from those with standard particles and obtaining a high-purity fluorescent particle solution.
    The experimental results show that with the geometric design of the micro pneumatic valve and Y-shaped bifurcation channel, when the valve pressure is set to 0.28 MPa, the droplets enter the non-actuated valve outlet with a 0% classification error rate. Additionally, the chip was found to operate continuously for over 3.5 hours.
    The study also discovered that when the channels were modified with Pluronic F-127, particles and droplets did not adhere to the channel walls, and the particle solution stably generated droplets. Detection results after PVA and Pluronic F-127 modification indicated that the slower-moving pinch-off droplets were more easily recognized compared to dripping droplets. Although surfactants were required to stabilize the formation of pinch-off droplets, the experiment revealed that these droplets were more suitable for automated image recognition sorting technology.
    Final testing demonstrated that when using PVA-modified channels, the classification accuracy of fluorescent particles reached up to 90.43%, with a target area fluorescent particle concentration of 61.23%, an increase of 31.45%. Meanwhile, the purity of fluorescent particles in the waste area decreased to 5.52%, a reduction of 24.26%. These findings indicate that the system has significant sorting effectiveness and considerable potential for applications in cell sorting.

    摘要I AbstractII 致謝XIII 目錄XV 表目錄XVIII 圖目錄XIX 符號索引XXV 第一章 緒論1 1-1 研究背景 1 1-2 研究目的 3 第二章 文獻回顧4 2-1 細胞與液珠分類操控技術4 2-1-1 細胞分類操控技術6 2-1-2 液珠分類技術10 2-2 液珠生成 14 2-2-1 氣體包覆液珠生成15 2-2-2 單細胞液珠包覆 16 2-3 流道設計 17 2-3-1 T型流道17 2-3-2 聚焦型流道 18 2-3-3 共伴流流道 19 2-4 影像處理 19 2-4-1 影像分割20 2-4-2 影像擷取23 2-4-3 影像分類24 2-5 表面改質 26 2-5-1 氧電漿改質法27 2-5-2 聚乙烯醇改質法 27 2-5-3 聚氧乙烯聚氧丙烯嵌段共聚物改質法29 第三章 研究方法31 3-1 分選實驗流程 31 3-2 微流體晶片製作方法32 3-2-1 流道與氣動閥之母模製作 32 3-2-2 微流體晶片基材選擇 43 3-2-3 流道與氣動閥翻製44 3-2-4 薄膜製作45 3-2-5 元件接合48 3-3 工作流體製備 50 3-4 流道改質方法 53 3-4-1 聚乙烯醇改質法 53 3-4-2 聚氧乙烯聚氧丙烯嵌段共聚物 + 乙醇改質法54 3-4-3 聚氧乙烯聚氧丙烯嵌段共聚物改質法54 3-5 實驗架設 55 3-5-1 氣動裝置架設59 3-5-2 螢光粒子激發與觀測 60 3-6 影像辨識流程 62 3-7 螢光粒子分析方法 63 3-7-1 分類準確率 63 3-7-2 螢光粒子純度64 3-7-3 螢光粒子篩選產率64 第四章 微流體晶片設計與驗證65 4-1 微流道晶片設計65 4-1-1 液珠生成流道設計66 4-1-2 液珠生成66 4-1-3 分類流道設計68 4-1-4 微氣動閥設計及驗證 70 4-1-5 微氣動閥反應時間78 4-2 流道改質 80 4-2-1 流道改質後影像分析 81 4-2-2 接觸角量測結果 86 4-2-3 流道改質總結90 4-3 影像辨識設定與探討90 4-3-1 液珠影像辨識閾值設定90 4-3-2 粒子影像辨識閾值設定94 第五章 實驗結果與探討95 5-1 螢光粒子分類準確率96 5-2 螢光粒子分類純度 100 5-3 系統耐受度探討104 第六章 結論與未來期望105 6-1 結論 105 6-2 未來期望 106 文獻參考107

    [1] G. Mernier, N. Piacentini, R. Tornay, N. Buffi, and P. Renaud, "Cell viability assessment by flow cytometry using yeast as cell model," Sensors and Actuators B: Chemical, vol. 154, no. 2, pp. 160-163, 2011.
    [2] A. Raj, R. Halder, P. Sajeesh, and A. Sen, "Droplet generation in a microchannel with a controllable deformable wall," Microfluidics and Nanofluidics, vol. 20, pp. 1-16, 2016.
    [3] K. Jiang, A. X. Lu, P. Dimitrakopoulos, D. L. DeVoe, and S. R. Raghavan, "Microfluidic generation of uniform water droplets using gas as the continuous phase," Journal of colloid and interface science, vol. 448, pp. 275-279, 2015.
    [4] D. H. Yoon, J. Ito, T. Sekiguchi, and S. Shoji, "Active and precise control of microdroplet division using horizontal pneumatic valves in bifurcating microchannel," Micromachines, vol. 4, no. 2, pp. 197-205, 2013.
    [5] M. Parapouli, A. Vasileiadis, A.-S. Afendra, and E. Hatziloukas, "Saccharomyces cerevisiae and its industrial applications," AIMS microbiology, vol. 6, no. 1, p. 1, 2020.
    [6] A. Dalili, E. Samiei, and M. Hoorfar, "A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches," Analyst, vol. 144, no. 1, pp. 87-113, 2019.
    [7] T. Trantidou, Y. Elani, E. Parsons, and O. Ces, "Hydrophilic surface modification of PDMS for droplet microfluidics using a simple, quick, and robust method via PVA deposition," Microsystems & nanoengineering, vol. 3, no. 1, pp. 1-9, 2017.
    [8] S. Pinto et al., "Poly (dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications," Colloids and Surfaces B: Biointerfaces, vol. 81, no. 1, pp. 20-26, 2010.
    [9] D. Y. Kwok and A. W. Neumann, "Contact angle measurement and contact angle interpretation," Advances in colloid and interface science, vol. 81, no. 3, pp. 167-249, 1999.
    [10] S. C. Kim, D. J. Sukovich, and A. R. Abate, "Patterning microfluidic device wettability with spatially-controlled plasma oxidation," Lab on a Chip, vol. 15, no. 15, pp. 3163-3169, 2015.
    [11] A. Goffeau et al., "Life with 6000 genes," Science, vol. 274, no. 5287, pp. 546-567, 1996.
    [12] S. F. Mohammed, F. A. Mahmood, and E. R. Abas, "A review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance," J. Entomol. Zool. Stud, vol. 6, pp. 629-635, 2018.
    [13] "Saccharomyces cerevisiae life in beer, bread and wine." [Online]. Available: https://www.micropia.nl/en/discover/microbiology/saccharomyces-cerevisiae/.
    [14] 蕭翊庭, "可視化液珠型肌肉衛星細胞篩檢系統," 國立台灣大學機械工程學系碩士論文, 2021.
    [15] 朱旭剛, "應用氣動式液珠驅動平台於胰島功能篩檢," 2015.
    [16] M. Sesen and G. Whyte, "Image-based single cell sorting automation in droplet microfluidics," Scientific reports, vol. 10, no. 1, p. 8736, 2020.
    [17] X. Wei, K. Chen, S. Guo, W. Liu, and X.-Z. Zhao, "Emerging microfluidic technologies for the detection of circulating tumor cells and fetal nucleated red blood cells," ACS Applied Bio Materials, vol. 4, no. 2, pp. 1140-1155, 2021.
    [18] D. Vallejo, A. Nikoomanzar, B. M. Paegel, and J. C. Chaput, "Fluorescence-activated droplet sorting for single-cell directed evolution," ACS synthetic biology, vol. 8, no. 6, pp. 1430-1440, 2019.
    [19] N. Pamme and C. Wilhelm, "Continuous sorting of magnetic cells via on-chip free-flow magnetophoresis," Lab on a Chip, vol. 6, no. 8, pp. 974-980, 2006.
    [20] Y. Shen, Y. Yalikun, and Y. Tanaka, "Recent advances in microfluidic cell sorting systems," Sensors and Actuators B: Chemical, vol. 282, pp. 268-281, 2019.
    [21] L. Ren et al., "A high-throughput acoustic cell sorter," Lab on a Chip, vol. 15, no. 19, pp. 3870-3879, 2015.
    [22] M. E. Warkiani et al., "Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells," Lab on a Chip, vol. 14, no. 1, pp. 128-137, 2014.
    [23] X. Fan et al., "A microfluidic chip integrated with a high-density PDMS-based microfiltration membrane for rapid isolation and detection of circulating tumor cells," Biosensors and Bioelectronics, vol. 71, pp. 380-386, 2015.
    [24] P. K. Kundu, I. M. Cohen, and D. R. Dowling, Fluid mechanics. Academic press, 2015.
    [25] B. Talebjedi, A. Sattari, A. Z. Sihorwala, and M. Hoorfar, "Geometrical Based Unequal Droplet Splitting Using Microfluidic Y-Junction," International Journal of Biomedical and Biological Engineering, vol. 15, no. 5, pp. 177-181, 2021.
    [26] M. Yamada, S. Doi, H. Maenaka, M. Yasuda, and M. Seki, "Hydrodynamic control of droplet division in bifurcating microchannel and its application to particle synthesis," Journal of colloid and interface science, vol. 321, no. 2, pp. 401-407, 2008.
    [27] D. J. Collins, A. Neild, A. DeMello, A.-Q. Liu, and Y. Ai, "The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation," Lab on a Chip, vol. 15, no. 17, pp. 3439-3459, 2015.
    [28] P. Zhu and L. Wang, "Passive and active droplet generation with microfluidics: a review," Lab on a Chip, vol. 17, no. 1, pp. 34-75, 2017.
    [29] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, "Droplet based microfluidics," Reports on progress in physics, vol. 75, no. 1, p. 016601, 2011.
    [30] S.-Y. Teh, R. Lin, L.-H. Hung, and A. P. Lee, "Droplet microfluidics," Lab on a Chip, vol. 8, no. 2, pp. 198-220, 2008.
    [31] X. Jiang, K.-I. Sotowa, and O. Tonomura, "Controlling gas–liquid segment length in microchannels using a high-speed valve," Chemical Engineering Research and Design, vol. 188, pp. 868-876, 2022.
    [32] J. Hong, J. d. Andrew, and S. N. Jayasinghe, "Bio-electrospraying and droplet-based microfluidics: control of cell numbers within living residues," Biomedical materials, vol. 5, no. 2, p. 021001, 2010.
    [33] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, "Dynamic pattern formation in a vesicle-generating microfluidic device," Physical review letters, vol. 86, no. 18, p. 4163, 2001.
    [34] C. N. Baroud, F. Gallaire, and R. Dangla, "Dynamics of microfluidic droplets," Lab on a Chip, vol. 10, no. 16, pp. 2032-2045, 2010.
    [35] P. Garstecki, M. J. Fuerstman, H. A. Stone, and G. M. Whitesides, "Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up," Lab on a Chip, vol. 6, no. 3, pp. 437-446, 2006.
    [36] S. L. Anna, N. Bontoux, and H. A. Stone, "Formation of dispersions using “flow focusing” in microchannels," Applied physics letters, vol. 82, no. 3, pp. 364-366, 2003.
    [37] T. Alkayyali, T. Cameron, B. Haltli, R. Kerr, and A. Ahmadi, "Microfluidic and cross-linking methods for encapsulation of living cells and bacteria-A review," Analytica chimica acta, vol. 1053, pp. 1-21, 2019.
    [38] P. Umbanhowar, V. Prasad, and D. A. Weitz, "Monodisperse emulsion generation via drop break off in a coflowing stream," Langmuir, vol. 16, no. 2, pp. 347-351, 2000.
    [39] 柯建全, 黃膺任, and 艾群, "應用影像處理計算生乳體細胞數之研究," 農業機械學刊, vol. 8, no. 4, pp. 1-15, 1999.
    [40] K. Lee, S.-E. Kim, J. Doh, K. Kim, and W. K. Chung, "User-friendly image-activated microfluidic cell sorting technique using an optimized, fast deep learning algorithm," Lab on a Chip, vol. 21, no. 9, pp. 1798-1810, 2021.
    [41] Y. Li, R. Zhu, L. Mi, Y. Cao, and D. Yao, "Segmentation of white blood cell from acute lymphoblastic leukemia images using dual‐threshold method," Computational and mathematical methods in medicine, vol. 2016, no. 1, p. 9514707, 2016.
    [42] Y. Pan, T. Zhou, and Y. Xia, "Bacterial foraging based edge detection for cell image segmentation," in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015: IEEE, pp. 3873-3876.
    [43] 謝豐陽, "分水嶺轉換在影像切割與資料分類上之研究," 中央大學資訊工程學系學位論文, vol. 2006, pp. 1-121, 2006.
    [44] "OpenCV中的图像处理 " https://opencv-python-tutorials.readthedocs.io/zh/latest/4.%20OpenCV%E4%B8%AD%E7%9A%84%E5%9B%BE%E5%83%8F%E5%A4%84%E7%90%86/4.15.%20%E5%9F%BA%E4%BA%8E%E5%88%86%E6%B0%B4%E5%B2%AD%E7%AE%97%E6%B3%95%E7%9A%84%E5%9B%BE%E5%83%8F%E5%88%86%E5%89%B2/ (accessed.
    [45] X. Ji, Y. Li, J. Cheng, Y. Yu, and M. Wang, "Cell image segmentation based on an improved watershed algorithm," in 2015 8th International Congress on Image and Signal Processing (CISP), 2015: IEEE, pp. 433-437.
    [46] H. Vaghela, H. Modi, M. Pandya, and M. Potdar, "A novel approach to detect chronic leukemia using shape based feature extraction and identification with digital image processing," International Journal of Applied Information Systems, vol. 11, no. 5, pp. 9-16, 2016.
    [47] N. H. Mahmood, P. C. Lim, S. M. Mazalan, and M. A. A. Razak, "Blood cells extraction using color based segmentation technique," International journal of life sciences biotechnology and pharma research, vol. 2, no. 2, pp. 2250-3137, 2013.
    [48] N. A. Almansour et al., "Neural network and support vector machine for the prediction of chronic kidney disease: A comparative study," Computers in biology and medicine, vol. 109, pp. 101-111, 2019.
    [49] K. O'shea and R. Nash, "An introduction to convolutional neural networks," arXiv preprint arXiv:1511.08458, 2015.
    [50] D. Wu, Y. Luo, X. Zhou, Z. Dai, and B. Lin, "Multilayer poly (vinyl alcohol)‐adsorbed coating on poly (dimethylsiloxane) microfluidic chips for biopolymer separation," Electrophoresis, vol. 26, no. 1, pp. 211-218, 2005.
    [51] A. Kamnerdsook et al., "Formation of double emulsion micro-droplets in a microfluidic device using a partially hydrophilic–hydrophobic surface," RSC advances, vol. 11, no. 56, pp. 35653-35662, 2021.
    [52] W. Syverson, M. Fleming, and P. Schubring, "The effects of reversing wafer-surface wetting properties of sulfuric acid: hydrogen peroxide wafer-cleaning solutions," in Proceedings of the Fourth International Symposium on Cleaning Technology in Semiconductor Device Manufacturing, 1996, vol. 95, no. 20: The Electrochemical Society, p. 60.
    [53] MicroChem., "SU-8 2000 Permanent Epoxy Negative Photoresist PROCESSING GUIDELINES FOR: SU-8 2025, SU-8 2035, SU-8 2050 and SU-8 2075.." [Online]. Available: www.atgc.co.jp.
    [54] D. H. Yoon, D. Wakui, A. Nakahara, T. Sekiguchi, and S. Shoji, "Selective droplet sampling using a minimum number of horizontal pneumatic actuators in a high aspect ratio and highly flexible PDMS device," RSC advances, vol. 5, no. 3, pp. 2070-2074, 2015.
    [55] T. K. Kim, J. K. Kim, and O. C. Jeong, "Measurement of nonlinear mechanical properties of PDMS elastomer," Microelectronic Engineering, vol. 88, no. 8, pp. 1982-1985, 2011.
    [56] W. Zhang, G. Ferguson, and e. S. Tatic-Lucic, "Elastomer-supported cold welding for room temperature wafer-level bonding," in 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest, 2004: IEEE, pp. 741-744.
    [57] A. Bąk and W. Podgórska, "Interfacial and surface tensions of toluene/water and air/water systems with nonionic surfactants Tween 20 and Tween 80," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 504, pp. 414-425, 2016.
    [58] Z. Yan, H. Huang, and Z. Pan, "Bubble breakup and boiling heat transfer in Y‐shaped bifurcating microchannels," AIChE Journal, vol. 69, no. 2, p. e17836, 2023.
    [59] S. Claus, S. Jezierska, and I. N. Van Bogaert, "Protein‐facilitated transport of hydrophobic molecules across the yeast plasma membrane," FEBS letters, vol. 593, no. 13, pp. 1508-1527, 2019.
    [60] 杨敏, 邓艳芹, 张昱, and 吕文洲, "酵母菌在疏水性有机污染物去除方面的应用," 生物产业技术, no. 4, pp. 28-31, 2008.

    無法下載圖示 校內:2029-08-16公開
    校外:2029-08-16公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE