簡易檢索 / 詳目顯示

研究生: 何冠宇
Ho, Kuan-Yu
論文名稱: 廢咖啡渣結合H2O2與焙燒之雙重前處理後的熱值最大化和生物炭生產之多目標優化
Valorization of spent coffee grounds: dual pretreatment of H2O2 mixing followed by torrefaction for calorific value maximalization and the multi-objective optimization of biochar production
指導教授: 陳維新
Chen, Wei-Hsin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 79
中文關鍵詞: 廢咖啡渣(SCG)焙燒與生物炭高熱值(HHV)過氧化氫多目標優化功率損耗非支配排序遺傳算法 II (NSGA-II)
外文關鍵詞: Spent coffee grounds (SCGs), torrefaction and biochar, higher heating value (HHV), hydrogen peroxide, multi-objective optimization, power consumption, non-dominated sorting genetic algorithm II (NSGA-II)
ResearchGate: 10.1016/j.envres.2022.114016 10.1016/j.biortech.2023.128584
相關次數: 點閱:138下載:12
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢咖啡渣(SCG)具備優良的特性,使其成為可用於生產生物炭來取代木炭的生質物。然而,未經處理的SCG水分含量高,且與煤炭相比熱值較低。乾燥和焙燒是兩個能夠提高SCG燃料特性的製程。但這兩個製程都消耗大量能源;因此,在這些過程中節能十分重要。本研究提出了兩種方法來增強SCG的燃料品質,並優化其生產過程。
    在研究的第一部分中,透過以重量比1:0.75的比例混合SCG和過氧化氫(H2O2)的節能前處理方法,將焙燒SCG生物炭進行高位發熱值(HHV)的最大化。田口法優化的生物炭的最大HHV為30.33 MJ∙kg-1,相較於未經處理的SCG提高了46.9%,相較於未經H2O2前處理的SCG生物炭提高了6.5%。田口法建議使用18%的H2O2濃度以獲得最大化的HHV。為了評估H2O2前處理對HHV和碳含量的貢獻程度,本文採用了差異強度(IOD)指標。IOD隨著H2O2前處理溫度的升高而增加。在焙燒前,經50°C前處理的SCG的IOD值為1.94%,而經105°C前處理的SCG的IOD值為8.06%。這是因為在焙燒之前,H2O2前處理一定程度地削弱了SCG的分子結構,從而導致更高的IOD值。經105°C前處理的焙燒SCG(TSCG)的IOD值為10.71%,較經50°C前處理的IOD值增加了4.59%。這意味著,用H2O2在105°C前處理的TSCG具有更好的熱穩定性。總體而言,本研究發現H2O2是一種綠色且有潛力的前處理添加劑,可用於大幅提高SCG生物炭的燃值。
    研究的第二部分有關於一種根據熱處理過程中的功耗來預測SCG水分含量並評估SCG 生物炭的HHV的新方法。結果發現,在焙燒過程中,HHV 的增加率緊隨功率消耗的減少,這現象可以用來確定樣品所需的前處理時間以減少不必要的能源損耗。本研究使用非支配排序遺傳算法 II (NSGA-II) 來最大化 SCG 生物炭的 HHV,同時最小化處理過程中的能量消耗。NSGA-II的優化結果表明,使用 244 °C 的焙燒溫度和 27 分鐘 43 秒的焙燒時間,能生產 23.98 MJ∙kg-1 的 SCG 生物炭,而過程將消耗20.042 MJ∙kg-1的能量。此生物炭每公斤能量產率為85.93%,估計能源投入成本為每公斤新台幣12.21元。

    Spent coffee grounds (SCGs) possess rich qualities that make it a viable candidate to be used for biochar production to replace charcoal. However, untreated SCGs are high in moisture content and have a low calorific value compared to coal. To enhance the fuel properties of SCGs, drying and torrefaction could be performed. However, both processes are energy-intensive, and therefore, energy conservation during these processes is crucial. Two methods are devised in this study to enhance SCGs and to optimize its production processes.
    In the first part of the study, an energy-saving biochar valorization strategy by mixing SCGs with hydrogen peroxide (H2O2) at a weight ratio of 1:0.75 to maximize the HHV of torrefied SCG biochar is developed. Maximized biochar’s HHV derived via the Taguchi method is 30.33 MJ∙kg-1, a 46.9% increase compared to the raw SCG, and a 6.5% increase compared to the unpretreated SCG biochar. The H2O2 concentration recommended by Taguchi is 18% for the maximized HHV. A quantitative identification index of intensity of difference (IOD) is adopted to evaluate the contributive level of H2O2 pretreatment in terms of the HHV and carbon content. IOD increases with increasing H2O2 pretreatment temperature. Before torrefaction, SCGs’ IOD pretreated at 50 °C is 1.94%, while that pretreated at 105 °C is 8.06%. This is because, before torrefaction, H2O2 pretreatment weakens SCGs’ molecular structure, resulting in a higher IOD value. The IOD value of torrefied SCGs (TSCG) pretreated at 105 °C is 10.71%, accounting for a 4.59% increase compared to that pretreated at 50 °C. This implies that TSCG pretreated by H2O2 at 105 °C has better thermal stability. Overall, it is demonstrated that H2O2 is a green and promising pretreatment additive for upgrading SCG biochar’s calorific value, and torrefied SCGs have the potential to be used as a solid fuel to approach carbon neutrality.
    For the second part of the study, a new method to evaluate SCG biochars’ HHV and predict moisture content from power consumption is developed. It is found that during torrefaction, the increasing rates of HHV immediately follow decreases in power consumption, which could be used to determine the pretreatment time for energy conservation. The non-dominated sorting genetic algorithm II (NSGA-II) maximizes SCG biochar’s HHV while minimizing energy consumption. The results show that producing SCG biochar with 23.98 MJ∙kg-1 HHV requires 20.042 MJ∙kg-1, using a torrefaction temperature of 244 °C and torrefaction time of 27 min and 43 sec. Every kilogram of biochar with an energy yield of 85.93% is estimated to cost NT$ 12.21 in energy consumption.

    中文摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures VIII List of Tables X Nomenclature XI Chapter 1 Introduction 1 1.1. Background 1 1.2. Motivation and Objectives 4 1.3. Schematics of research outline 6 Chapter 2 Literature Review 8 2.1. Applications of spent coffee grounds in energy 8 2.2. Energy-saving techniques regarding SCG production 9 Chapter 3 Theory and Methodology 12 3.1. Dual pretreatment of mixing H2O2 followed by torrefaction 12 3.1.1. Materials and torrefaction conditions 12 3.1.2. Design of experiment 12 3.1.3. Analysis and biochar characterization 13 3.2. Multi-objective optimization of spent coffee ground torrefaction 14 3.2.1. Materials and torrefaction conditions 14 3.2.2. Collection of power consumption data 15 3.2.3. Analyses and sample characterization 16 3.2.4. Regression models and NSGA-II optimization 17 Chapter 4 Results and Discussion 18 4.1. Dual pretreatment of mixing H2O2 followed by torrefaction 18 4.1.1. Properties of SCGs and biochars 18 4.1.2. Storage properties 24 4.1.3. Influence of H2O2 pretreatment at different temperatures 31 4.1.4. H2O2-pretreated optimization of spent coffee ground torrefaction 39 4.2. Multi-objective optimization of spent coffee ground torrefaction 47 4.2.1. Properties of SCGs, TSCG, LCs, and TLCs 47 4.2.2. Moisture content prediction 52 4.2.3. Relationship between HHV and power consumption 57 4.2.4. Multi-objective optimization 63 Chapter 5 Conclusion and Future Works 67 5.1. Conclusion 67 5.2. Future works 68 References 69 自述 77

    [1] IEA, Electricity Market Report - July 2021, in: IEA (Ed.) Paris, 2021.
    [2] L. Hakeem, M.A. Khan, R. Muhammad, A. Elkamel, Z. Muhammad, A multi-period optimization model for power sector with CO2 emission considerations, International Journal of Energy Research 46(3) (2022) 2655-2673. https://doi.org/10.1002/er.7337.
    [3] X. Xue, Y. Wang, H. Chen, G. Xu, A coal-fired power plant integrated with biomass co-firing and CO2 capture for zero carbon emission, Frontiers in Energy (2021). https://doi.org/10.1007/s11708-021-0790-8.
    [4] A. Tomczyk, Z. Sokolowska, P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY 19(1) (2020) 191-215. https://doi.org/10.1007/s11157-020-09523-3.
    [5] A.T. Hoang, H.C. Ong, I.M.R. Fattah, C.T. Chong, C.K. Cheng, R. Sakthivel, Y.S. Ok, Progress on the lignocellulosic biomass pyrolysis for biofuel production toward environmental sustainability, FUEL PROCESSING TECHNOLOGY 223 (2021). https://doi.org/10.1016/j.fuproc.2021.106997.
    [6] I. Koniuszewska, E. Korzeniewska, M. Harnisz, Intensification of biogas production using various technologies: A review, INTERNATIONAL JOURNAL OF ENERGY RESEARCH 44(8) (2020) 6240-6258. https://doi.org/10.1002/er.5338.
    [7] R. Aniza, W.-H. Chen, F.-C. Yang, A. Pugazhendh, Y. Singh, Integrating Taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis, Bioresource Technology 343 (2022) 126140. https://doi.org/https://doi.org/10.1016/j.biortech.2021.126140.
    [8] M. Kim, J.M. Jung, S. Jung, J. Kim, A. Bhatnagar, Y.F. Tsang, K.Y.A. Lin, E.E. Kwon, Biochar as a catalyst in the production of syngas and biodiesel from peanut waste, INTERNATIONAL JOURNAL OF ENERGY RESEARCH (2022). https://doi.org/10.1002/er.7708.
    [9] T. Murindahabi, Q. li, B. Ekanayake, E. Nisingizwe, Do coffee exports have impact on long-term economic growth of countries?, Agricultural Economics (AGRICECON) 65 (2019) 385-393. https://doi.org/10.17221/283/2018-AGRICECON.
    [10] M.M. Tun, H. Raclavská, D. Juchelková, J. Růžičková, M. Šafář, K. Štrbová, P. Gikas, Spent coffee ground as renewable energy source: Evaluation of the drying processes, Journal of Environmental Management 275 (2020) 111204. https://doi.org/https://doi.org/10.1016/j.jenvman.2020.111204.
    [11] L. Blinová, M. Sirotiak, A. Pastierova, M. Soldán, Review: Utilization of Waste From Coffee Production, Research Papers Faculty of Materials Science and Technology Slovak University of Technology 25 (2017). https://doi.org/10.1515/rput-2017-0011.
    [12] F. Battista, E.M. Barampouti, S. Mai, D. Bolzonella, D. Malamis, K. Moustakas, M. Loizidou, Added-value molecules recovery and biofuels production from spent coffee grounds, Renewable and Sustainable Energy Reviews 131 (2020) 110007. https://doi.org/https://doi.org/10.1016/j.rser.2020.110007.
    [13] G. Corro, U. Pal, S. Cebada, Enhanced biogas production from coffee pulp through deligninocellulosic photocatalytic pretreatment, Energy Science & Engineering 2(4) (2014) 177-187.
    [14] S.S. Arya, R. Venkatram, P.R. More, P. Vijayan, The wastes of coffee bean processing for utilization in food: a review, Journal of Food Science and Technology (2021). https://doi.org/10.1007/s13197-021-05032-5.
    [15] A. Cervera-Mata, L. Lara, A. Fernandez-Arteaga, J.A. Rufian-Henares, G. Delgado, Washed hydrochar from spent coffee grounds: A second generation of coffee residues. Evaluation as organic amendment, WASTE MANAGEMENT 120 (2021) 322-329. https://doi.org/10.1016/j.wasman.2020.11.041.
    [16] Z. Al-Hamamre, S. Foerster, F. Hartmann, M. Kröger, M. Kaltschmitt, Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing, Fuel 96 (2012) 70-76. https://doi.org/https://doi.org/10.1016/j.fuel.2012.01.023.
    [17] Y. Liu, Q. Tu, G. Knothe, M. Lu, Direct transesterification of spent coffee grounds for biodiesel production, Fuel 199 (2017) 157-161. https://doi.org/https://doi.org/10.1016/j.fuel.2017.02.094.
    [18] G.D. Saratale, R. Bhosale, S. Shobana, J.R. Banu, A. Pugazhendhi, E. Mahmoud, R. Sirohi, S.K. Bhatia, A.E. Atabani, V. Mulone, J.J. Yoon, H.S. Shin, G. Kumar, A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production, Bioresource Technology 314 (2020). https://doi.org/10.1016/j.biortech.2020.123800.
    [19] A. Colantoni, E. Paris, L. Bianchini, S. Ferri, V. Marcantonio, M. Carnevale, A. Palma, V. Civitarese, F. Gallucci, Spent coffee ground characterization, pelletization test and emissions assessment in the combustion process, Scientific Reports 11(1) (2021) 5119. https://doi.org/10.1038/s41598-021-84772-y.
    [20] Y.X. Seow, Y.H. Tan, N.M. Mubarak, J. Kansedo, M. Khalid, M.L. Ibrahim, M. Ghasemi, A review on biochar production from different biomass wastes by recent carbonization technologies and its sustainable applications, JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 10(1) (2022). https://doi.org/10.1016/j.jece.2021.107017.
    [21] Y.-C. Chen, S.-Y. Jhou, Integrating spent coffee grounds and silver skin as biofuels using torrefaction, Renewable Energy 148 (2020) 275-283. https://doi.org/https://doi.org/10.1016/j.renene.2019.12.005.
    [22] X.J. Lee, H.C. Ong, W. Gao, Y.S. Ok, W.-H. Chen, B.H.H. Goh, C.T. Chong, Solid biofuel production from spent coffee ground wastes: Process optimisation, characterisation and kinetic studies, Fuel 292 (2021) 120309. https://doi.org/https://doi.org/10.1016/j.fuel.2021.120309.
    [23] L. Chaves, J. Terrados, F. Álvarez, H.-O. Manuel Jesús, Influence of Moisture, Temperature and Microbial Activity in Biomass Sustainable Storage. Special Focus on Olive Biomasses Int J Environ Sci Nat Res, 25 (2020) 87-98. https://doi.org/10.19080/IJESNR.2020.25.556165.
    [24] E. Alakoski, M. Jämsén, D. Agar, E. Tampio, M. Wihersaari, From wood pellets to wood chips, risks of degradation and emissions from the storage of woody biomass – A short review, Renewable and Sustainable Energy Reviews 54 (2016) 376-383. https://doi.org/https://doi.org/10.1016/j.rser.2015.10.021.
    [25] W.-H. Chen, C.-W. Wang, H.C. Ong, P.L. Show, T.-H. Hsieh, Torrefaction, pyrolysis and two-stage thermodegradation of hemicellulose, cellulose and lignin, Fuel 258 (2019) 116168. https://doi.org/https://doi.org/10.1016/j.fuel.2019.116168.
    [26] R. Narzari, N. Bordoloi, R. Chutia, B. Borkotoki, N. Gogoi, A. Bora, R. Kataki, Chapter 2- Biochar: An Overview on its Production, Properties and Potential Benefits, 2015, pp. 13-40. https://doi.org/10.13140/RG.2.1.3966.2560.
    [27] Y.D. Chen, F.Y. Liu, N.Q. Ren, S.H. Ho, Revolutions in algal biochar for different applications: State-of-the-art techniques and future scenarios, CHINESE CHEMICAL LETTERS 31(10) (2020) 2591-2602. https://doi.org/10.1016/j.cclet.2020.08.019.
    [28] T.R. Sarker, R. Azargohar, A.K. Dalai, V. Meda, Enhancement of fuel and physicochemical properties of canola residues via microwave torrefaction, Energy Reports 7 (2021) 6338-6353. https://doi.org/https://doi.org/10.1016/j.egyr.2021.09.068.
    [29] Y. Kim, J. Lim, H. Cho, J. Kim, Novel mechanical vapor recompression-assisted evaporation process for improving energy efficiency in pulp and paper industry, INTERNATIONAL JOURNAL OF ENERGY RESEARCH 46(3) (2022) 3409-3427. https://doi.org/10.1002/er.7390.
    [30] D.A. Sievers, E.M. Kuhn, J.J. Stickel, M.P. Tucker, E.J. Wolfrum, Online residence time distribution measurement of thermochemical biomass pretreatment reactors, Chemical Engineering Science 140 (2016) 330-336. https://doi.org/https://doi.org/10.1016/j.ces.2015.10.031.
    [31] H.-H. Bui, K.-Q. Tran, W.-H. Chen, Pyrolysis of microalgae residues – A kinetic study, Bioresource Technology 199 (2016) 362-366. https://doi.org/https://doi.org/10.1016/j.biortech.2015.08.069.
    [32] W.H. Glaze, J.-W. Kang, D.H. Chapin, The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation, Ozone: Science & Engineering 9(4) (1987) 335-352. https://doi.org/10.1080/01919518708552148.
    [33] E.M. Cuerda-Correa, M.F. Alexandre-Franco, C. Fernández-González, Advanced Oxidation Processes for the Removal of Antibiotics from Water. An Overview, Water 12(1) (2020). https://doi.org/10.3390/w12010102.
    [34] O. Shoval, H. Sheftel, G. Shinar, Y. Hart, O. Ramote, A. Mayo, E. Dekel, K. Kavanagh, U. Alon, Evolutionary trade-offs, Pareto optimality, and the geometry of phenotype space, Science (New York, N.Y.) 336(6085) (2012) 1157-60. https://doi.org/10.1126/science.1217405.
    [35] C. Zhang, S.-H. Ho, W.-H. Chen, Y. Xie, Z. Liu, J.-S. Chang, Torrefaction performance and energy usage of biomass wastes and their correlations with torrefaction severity index, Applied Energy 220 (2018) 598-604. https://doi.org/https://doi.org/10.1016/j.apenergy.2018.03.129.
    [36] J. McNutt, Q. He, Spent coffee grounds: A review on current utilization, Journal of Industrial and Engineering Chemistry 71 (2019) 78-88. https://doi.org/https://doi.org/10.1016/j.jiec.2018.11.054.
    [37] K.T. Lee, Y.T. Shih, S. Rajendran, Y.K. Park, W.H. Chen, Spent coffee ground torrefaction for waste remediation and valorization, ENVIRONMENTAL POLLUTION 324 (2023). https://doi.org/10.1016/j.envpol.2023.121330.
    [38] Y.C. Chen, S.Y. Jhou, Integrating spent coffee grounds and silver skin as biofuels using torrefaction, RENEWABLE ENERGY 148 (2020) 275-283. https://doi.org/10.1016/j.renene.2019.12.005.
    [39] R. Nepal, H.J. Kim, J. Poudel, S.C. Oh, A study on torrefaction of spent coffee ground to improve its fuel properties, FUEL 318 (2022). https://doi.org/10.1016/j.fuel.2022.123643.
    [40] A. Cardarelli, S. Pinzi, M. Barbanera, Effect of torrefaction temperature on spent coffee grounds thermal behaviour and kinetics, RENEWABLE ENERGY 185 (2022) 704-716. https://doi.org/10.1016/j.renene.2021.12.116.
    [41] K.-T. Lee, J.-T. Du, W.-H. Chen, A.T. Ubando, K.T. Lee, Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation, Environmental Pollution 285 (2021) 117244. https://doi.org/https://doi.org/10.1016/j.envpol.2021.117244.
    [42] K.T. Lee, J.Y. Tsai, A.T. Hoang, W.H. Chen, D.S. Gunarathne, K.Q. Tran, A. Selvarajoo, V. Goodarzi, Energy-saving drying strategy of spent coffee grounds for co-firing fuel by adding biochar for carbon sequestration to approach net zero, FUEL 326 (2022). https://doi.org/10.1016/j.fuel.2022.124984.
    [43] M. Corral-Bobadilla, R. Lostado-Lorza, F. Somovilla-Gomez, S. Iniguez-Macedo, Life cycle assessment multi-objective optimization for eco-efficient biodiesel production using waste cooking oil, JOURNAL OF CLEANER PRODUCTION 359 (2022). https://doi.org/10.1016/j.jclepro.2022.132113.
    [44] M. Aghbashlo, S. Hosseinpour, M. Tabatabaei, M. Mojarab Soufiyan, Multi-objective exergetic and technical optimization of a piezoelectric ultrasonic reactor applied to synthesize biodiesel from waste cooking oil (WCO) using soft computing techniques, Fuel 235 (2019) 100-112. https://doi.org/https://doi.org/10.1016/j.fuel.2018.07.095.
    [45] P.C. Gonçalves, L.P.C. Monteiro, L.d.S. Santos, Multi-objective optimization of a biodiesel production process using process simulation, Journal of Cleaner Production 270 (2020) 122322. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.122322.
    [46] K.-T. Lee, J.-Y. Tsai, A.T. Hoang, W.-H. Chen, D.S. Gunarathne, K.-Q. Tran, A. Selvarajoo, V. Goodarzi, Energy-saving drying strategy of spent coffee grounds for co-firing fuel by adding biochar for carbon sequestration to approach net zero, Fuel 326 (2022) 124984. https://doi.org/https://doi.org/10.1016/j.fuel.2022.124984.
    [47] W.-H. Chen, C.F. Eng, Y.-Y. Lin, Q.-V. Bach, Independent parallel pyrolysis kinetics of cellulose, hemicelluloses and lignin at various heating rates analyzed by evolutionary computation, Energy Conversion and Management 221 (2020) 113165. https://doi.org/https://doi.org/10.1016/j.enconman.2020.113165.
    [48] R.P.W. Duin, H. Haringa, R. Zeelen, Fast percentile filtering, Pattern Recognition Letters 4(4) (1986) 269-272. https://doi.org/https://doi.org/10.1016/0167-8655(86)90007-3.
    [49] L.D. Torquato, P.M. Crnkovic, C.A. Ribeiro, M.S. Crespi, New approach for proximate analysis by thermogravimetry using CO2 atmosphere, Journal of Thermal Analysis and Calorimetry 128(1) (2017) 1-14.
    [50] J.-J. Lu, W.-H. Chen, Investigation on the ignition and burnout temperatures of bamboo and sugarcane bagasse by thermogravimetric analysis, Applied Energy 160 (2015) 49-57. https://doi.org/https://doi.org/10.1016/j.apenergy.2015.09.026.
    [51] B.-J. Lin, W.-H. Chen, T.-H. Hsieh, H.C. Ong, P.L. Show, S.R. Naqvi, Oxidative reaction interaction and synergistic index of emulsified pyrolysis bio-oil/diesel fuels, Renewable Energy 136 (2019) 223-234. https://doi.org/https://doi.org/10.1016/j.renene.2018.12.111.
    [52] P.J. Van Soest, J.B. Robertson, B.A. Lewis, Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition, Journal of Dairy Science 74(10) (1991) 3583-3597. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(91)78551-2.
    [53] H.P. Gavin, The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems c ©, 2013.
    [54] H. Sayyaadi, R. Mehrabipour, Efficiency enhancement of a gas turbine cycle using an optimized tubular recuperative heat exchanger, Energy 38(1) (2012) 362-375. https://doi.org/https://doi.org/10.1016/j.energy.2011.11.048.
    [55] W.-H. Chen, B.-J. Lin, Y.-Y. Lin, Y.-S. Chu, A.T. Ubando, P.L. Show, H.C. Ong, J.-S. Chang, S.-H. Ho, A.B. Culaba, A. Pétrissans, M. Pétrissans, Progress in biomass torrefaction: Principles, applications and challenges, Progress in Energy and Combustion Science 82 (2021) 100887. https://doi.org/https://doi.org/10.1016/j.pecs.2020.100887.
    [56] M. Saeed, S. Ahmad, M. Kazmi, M. Mohsin, N. Feroze, Impact of torrefaction technique on the moisture contents, bulk density and calorific value of briquetted biomass, Polish Journal of Chemical Technology 0 (2015). https://doi.org/10.1515/pjct-2015-0024.
    [57] J. Carneiro-Junior, G. Oliveira, C. Alves, H. Andrade, S. Melo, E. Torres, Valorization of Prosopis juliflora Woody Biomass in Northeast Brazilian through Dry Torrefaction, Energies 14 (2021) 3465. https://doi.org/10.3390/en14123465.
    [58] S. Bakshi, C. Banik, D.A. Laird, Estimating the organic oxygen content of biochar, Scientific Reports 10(1) (2020) 13082. https://doi.org/10.1038/s41598-020-69798-y.
    [59] S. Channiwala, P.P. Parikh, A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels, Fuel 81 (2002) 1051-1063. https://doi.org/10.1016/S0016-2361(01)00131-4.
    [60] J. Parikh, S. Channiwala, G.K. Ghosal, A correlation for calculating HHV from proximate analysis of solid fuels, Fuel 84 (2005) 487-494. https://doi.org/10.1016/j.fuel.2004.10.010.
    [61] D.W. Krevelen, J. Schuyer, Coal science: aspects of coal constitution, Elsevier publishing company1957.
    [62] M. Agraniotis, C. Bergins, M. Stein-Cichoszewska, E. Kakaras, 5 - High-efficiency pulverized coal power generation using low-rank coals, in: Z. Luo, M. Agraniotis (Eds.), Low-Rank Coals for Power Generation, Fuel and Chemical Production, Woodhead Publishing2017, pp. 95-124. https://doi.org/https://doi.org/10.1016/B978-0-08-100895-9.00005-X.
    [63] A. Mukherjee, J. Okolie, C. Niu, A. Dalai, Experimental and Modeling Studies of Torrefaction of Spent Coffee Grounds and Coffee Husk: Effects on Surface Chemistry and Carbon Dioxide Capture Performance, ACS Omega (2021). https://doi.org/10.1021/acsomega.1c05270.
    [64] S. Guo, Y. Gao, Y. Wang, Z. Liu, X. Wei, P. Peng, B. Xiao, Y. Yang, Urea/ZnCl2 in situ hydrothermal carbonization of Camellia sinensis waste to prepare N-doped biochar for heavy metal removal, Environmental Science and Pollution Research 26(29) (2019) 30365-30373. https://doi.org/10.1007/s11356-019-06194-8.
    [65] A. Hornung, F. Stenzel, J. Grunwald, Biochar—just a black matter is not enough, Biomass Conversion and Biorefinery (2021). https://doi.org/10.1007/s13399-021-01284-5.
    [66] Y. Chun, G. Sheng, C.T. Chiou, B. Xing, Compositions and Sorptive Properties of Crop Residue-Derived Chars, Environmental Science & Technology 38(17) (2004) 4649-4655. https://doi.org/10.1021/es035034w.
    [67] S. Nanda, M. Gong, H.N. Hunter, A.K. Dalai, I. Gökalp, J.A. Kozinski, An assessment of pinecone gasification in subcritical, near-critical and supercritical water, Fuel Processing Technology 168 (2017) 84-96. https://doi.org/https://doi.org/10.1016/j.fuproc.2017.08.017.
    [68] J. Gong, J. Li, J. Xu, Z. Xiang, L. Mo, Research on cellulose nanocrystals produced from cellulose sources with various polymorphs, RSC Adv. 7 (2017) 33486-33493. https://doi.org/10.1039/C7RA06222B.
    [69] S. Nanda, P. Mohanty, K.K. Pant, S. Naik, J.A. Kozinski, A.K. Dalai, Characterization of North American Lignocellulosic Biomass and Biochars in Terms of their Candidacy for Alternate Renewable Fuels, BioEnergy Research 6(2) (2013) 663-677. https://doi.org/10.1007/s12155-012-9281-4.
    [70] Y.W. Phuang, W.Z. Ng, S.S. Khaw, Y.Y. Yap, S. Gan, L.Y. Lee, S. Thangalazhy-Gopakumar, Wet torrefaction pre-treatment of yard waste to improve the fuel properties, Materials Science for Energy Technologies 4 (2021) 211-223. https://doi.org/https://doi.org/10.1016/j.mset.2021.06.005.
    [71] M. Poletto, A.J. Zattera, M.M.C. Forte, R.M.C. Santana, Thermal decomposition of wood: Influence of wood components and cellulose crystallite size, Bioresource Technology 109 (2012) 148-153. https://doi.org/https://doi.org/10.1016/j.biortech.2011.11.122.
    [72] K. Kafle, C.M. Lee, H. Shin, J. Zoppe, D.K. Johnson, S.H. Kim, S. Park, Effects of Delignification on Crystalline Cellulose in Lignocellulose Biomass Characterized by Vibrational Sum Frequency Generation Spectroscopy and X-ray Diffraction, BioEnergy Research 8(4) (2015) 1750-1758. https://doi.org/10.1007/s12155-015-9627-9.
    [73] M. Sevilla, J.A. Maciá-Agulló, A.B. Fuertes, Hydrothermal carbonization of biomass as a route for the sequestration of CO2: Chemical and structural properties of the carbonized products, Biomass and Bioenergy 35(7) (2011) 3152-3159. https://doi.org/https://doi.org/10.1016/j.biombioe.2011.04.032.
    [74] I. Kubovský, D. Kačíková, F. Kačík, Structural Changes of Oak Wood Main Components Caused by Thermal Modification, 2020. https://doi.org/10.13140/RG.2.2.33028.88969.
    [75] T.M. Mahadevan, Q.H. Ng, Y.P. Teoh, S.H. Shuit, Z. Ooi, K. Balakrishnan, Structural and composition modification of Harum Manis mango (Mangifera indica) leaves via chemical pretreatment for bioethanol production, Biomass Conversion and Biorefinery (2021). https://doi.org/10.1007/s13399-021-01469-y.
    [76] W. Wrzeszcz, P. Tomza, M. Kwaśniewicz, S. Mazurek, M. Czarnecki, Microheterogeneity in binary mixtures of aliphatic alcohols and alkanes: ATR-IR/NIR spectroscopic and chemometric studies, RSC Adv. 6 (2016). https://doi.org/10.1039/C6RA18692K.
    [77] M.R. Kasaai, Use of Water Properties in Food Technology: A Global View, International Journal of Food Properties 17(5) (2014) 1034-1054. https://doi.org/10.1080/10942912.2011.650339.
    [78] A. Dyjakon, T. Noszczyk, Smędzik, The Influence of Torrefaction Temperature on Hydrophobic Properties of Waste Biomass from Food Processing, Energies 12 (2019) 4609. https://doi.org/10.3390/en12244609.
    [79] V.M. Fernández, Water Activity, in: M. Gargaud, R. Amils, J.C. Quintanilla, H.J. Cleaves, W.M. Irvine, D.L. Pinti, M. Viso (Eds.), Encyclopedia of Astrobiology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2011, pp. 1763-1764. https://doi.org/10.1007/978-3-642-11274-4_1678.
    [80] J.R.d. Carmo, R.d.S. Pena, Influence of the temperature and granulometry on the hygroscopic behavior of tapioca flour, CyTA - Journal of Food 17(1) (2019) 900-906. https://doi.org/10.1080/19476337.2019.1668860.
    [81] W.-H. Chen, B.-J. Lin, B. Colin, A. Pétrissans, M. Pétrissans, A study of hygroscopic property of biomass pretreated by torrefaction, Energy Procedia 158 (2019) 32-36. https://doi.org/https://doi.org/10.1016/j.egypro.2019.01.030.
    [82] M. Heya, R. Foroughbakhch, A. Carrillo-Parra, S. Colín-Urieta, Bioenergy potential of shrub from native species of northeastern Mexico, International Journal of Agricultural Policy and Research 2 (2014) 475-483. https://doi.org/10.15739/IJAPR.020.
    [83] C.R.G. Torres, E. Crastechini, F.A. Feitosa, C.R. Pucci, A.B. Borges, Influence of pH on the Effectiveness of Hydrogen Peroxide Whitening, Operative Dentistry 39(6) (2014) E261-E268. https://doi.org/10.2341/13-214-L.
    [84] R. Chen, J.J. Pignatello, Role of Quinone Intermediates as Electron Shuttles in Fenton and Photoassisted Fenton Oxidations of Aromatic Compounds, Environmental Science & Technology 31(8) (1997) 2399-2406. https://doi.org/10.1021/es9610646.
    [85] S. Siddiqui, M. Keswani, B. Brooks, A. Fuerst, S. Raghavan, A study of hydrogen peroxide decomposition in ammonia-peroxide mixtures (APM), Microelectronic Engineering 102 (2013) 68-73. https://doi.org/https://doi.org/10.1016/j.mee.2012.04.003.
    [86] W.-H. Chen, P.-C. Kuo, A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry, Energy 35(6) (2010) 2580-2586. https://doi.org/10.1016/j.energy.2010.02.054.
    [87] F.-X. Collard, J. Blin, A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin, Renewable and Sustainable Energy Reviews 38 (2014) 594-608. https://doi.org/https://doi.org/10.1016/j.rser.2014.06.013.
    [88] M. Park, Y.S. Yun, S. Cho, N.R. Kim, H.J. Jin, Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors, Carbon letters 19 (2016) 66-71. https://doi.org/10.5714/CL.2016.19.066.
    [89] S. El-Sayed, M. Mostafa, Thermal pyrolysis and kinetic parameter determination of mango leaves using common and new proposed parallel kinetic models, RSC Advances 10 (2020) 18160–18179. https://doi.org/10.1039/d0ra00493f.
    [90] S. Huang, W. Wei, J. Zhang, J. Xie, Investigation of alkaline hydrogen peroxide pretreatment and Tween 80 to enhance enzymatic hydrolysis of sugarcane bagasse, Biotechnology for Biofuels 12 (2019). https://doi.org/10.1186/s13068-019-1454-3.
    [91] A. Tomczyk, Z. Sokołowska, P. Boguta, Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects, Reviews in Environmental Science and Bio/Technology 19(1) (2020) 191-215. https://doi.org/10.1007/s11157-020-09523-3.
    [92] A. Elnour, A. Alghyamah, H. Shaikh, A. Poulose, S. al-zahrani, A. Anis, M. Al-Wabel, Effect of Pyrolysis Temperature on Biochar Microstructural Evolution, Physicochemical Characteristics, and Its Influence on Biochar/Polypropylene Composites, Applied Sciences 9 (2019) 1149. https://doi.org/10.3390/app9061149.
    [93] A. Singh, S. Nanda, F. Sosa, F. Berruti, Pyrolysis of Miscanthus and characterization of value‐added bio‐oil and biochar products, The Canadian Journal of Chemical Engineering 99 (2020). https://doi.org/10.1002/cjce.23978.
    [94] W.-H. Chen, J. Peng, X.T. Bi, A state-of-the-art review of biomass torrefaction, densification and applications, Renewable and Sustainable Energy Reviews 44 (2015) 847-866. https://doi.org/https://doi.org/10.1016/j.rser.2014.12.039.
    [95] P. Bajpai, Environmentally benign approaches for pulp bleaching, Elsevier2012.
    [96] M. Shang, T. Noel, Y. Su, V. Hessel, Kinetic study of hydrogen peroxide decomposition at high temperatures and concentrations in two capillary microreactors, AIChE Journal 63 (2016). https://doi.org/10.1002/aic.15385.
    [97] C.W. Jones, Applications of hydrogen peroxide and derivatives, Royal Society of Chemistry1999.
    [98] A. Phaniendra, D.B. Jestadi, L. Periyasamy, Free radicals: properties, sources, targets, and their implication in various diseases, Indian J Clin Biochem 30(1) (2015) 11-26. https://doi.org/10.1007/s12291-014-0446-0.
    [99] D.A. Wink, C.B. Wink, R.W. Nims, P.C. Ford, Oxidizing intermediates generated in the Fenton reagent: kinetic arguments against the intermediacy of the hydroxyl radical, Environmental health perspectives 102 Suppl 3(Suppl 3) (1994) 11-5. https://doi.org/10.1289/ehp.94102s311.
    [100] R. Barzegar, A. Yozgatligil, H. Olgun, A.T. Atimtay, TGA and kinetic study of different torrefaction conditions of wood biomass under air and oxy-fuel combustion atmospheres, Journal of the Energy Institute 93(3) (2020) 889-898. https://doi.org/https://doi.org/10.1016/j.joei.2019.08.001.
    [101] N. Hong Nam, Thermal Behavior of Woody Biomass in a Low Oxygen Atmosphere Using Macro-Thermogravimetric Analysis, 14 (2020) 37-41.
    [102] S. Basu, A.K. Debnath, Chapter 2 - Main Equipment, in: S. Basu, A.K. Debnath (Eds.), Power Plant Instrumentation and Control Handbook (Second Edition), Academic Press, Boston, 2019, pp. 41-147. https://doi.org/https://doi.org/10.1016/B978-0-12-819504-8.00002-0.
    [103] H. Zhou, Y. Long, A. Meng, S. Chen, Q. Li, Y. Zhang, A novel method for kinetics analysis of pyrolysis of hemicellulose, cellulose, and lignin in TGA and macro-TGA, RSC Advances 5 (2015) 26509-26516.
    [104] P.D. Muley, C. Henkel, K.K. Abdollahi, C. Marculescu, D. Boldor, A critical comparison of pyrolysis of cellulose, lignin, and pine sawdust using an induction heating reactor, Energy Conversion and Management 117 (2016) 273-280. https://doi.org/https://doi.org/10.1016/j.enconman.2016.03.041.
    [105] M. Abdul Aziz, K. Sabil, Y. Uemura, L. Ismail, A Study on Torrefaction of Oil Palm Biomass, Journal of Applied Sciences 12 (2012) 1130-1135. https://doi.org/10.3923/jas.2012.1130.1135.
    [106] T. Shen, S. Gnanakaran, The Stability of Cellulose: A Statistical Perspective from a Coarse-Grained Model of Hydrogen-Bond Networks, Biophysical Journal 96(8) (2009) 3032-3040. https://doi.org/https://doi.org/10.1016/j.bpj.2008.12.3953.
    [107] Z. Börcsök, Z. Pásztory, The role of lignin in wood working processes using elevated temperatures: an abbreviated literature survey, European Journal of Wood and Wood Products 79(3) (2021) 511-526. https://doi.org/10.1007/s00107-020-01637-3.
    [108] Z. Liu, L. Wang, Y. Zhang, Y. Li, Z. Li, H. Cai, Cellulose-lignin and Xylan-lignin Interactions on the Formation of Lignin-derived Phenols in Pyrolysis Oil, BioResources 12 (2017) 4958-4971. https://doi.org/10.15376/biores.12.3.4958-4971.
    [109] S. Wang, Z. Luo, Pyrolysis of hemicellulose, De Gruyter2016, pp. 81-102. https://doi.org/doi:10.1515/9783110369632-005.
    [110] J.-H. Choi, S.-M. Cho, J.-C. Kim, S.-W. Park, Y.-M. Cho, B. Koo, H.W. Kwak, I.-G. Choi, Thermal Properties of Ethanol Organosolv Lignin Depending on Its Structure, ACS Omega 6(2) (2021) 1534-1546. https://doi.org/10.1021/acsomega.0c05234.
    [111] D. Nhuchhen, P. Basu, B. Acharya, A Comprehensive Review on Biomass Torrefaction, International Journal of Renewable Energy & Biofuels DOI: 10.5171/2014.506376 (2014) 56. https://doi.org/10.5171/2014.506376.
    [112] K.-T. Lee, J.-T. Du, W.-H. Chen, A. Ubando, K.T. Lee, Green additive to upgrade biochar from spent coffee grounds by torrefaction for pollution mitigation, Environmental Pollution 285 (2021) 117244. https://doi.org/10.1016/j.envpol.2021.117244.
    [113] S. Arya, R. Venkatram, P. More, P. Vijayan, The wastes of coffee bean processing for utilization in food: a review, Journal of Food Science and Technology 59 (2021) 1-16. https://doi.org/10.1007/s13197-021-05032-5.
    [114] S. Mussatto, E. Machado, S. Martins, J. Teixeira, Production, Composition, and Application of Coffee and Its Industrial Residues, Food and Bioprocess Technology 4 (2011) 661-672. https://doi.org/10.1007/s11947-011-0565-z.
    [115] TPC, Taiwan Power Company Rate Schedules, Taiwan Power Company 2022, p. 23.
    [116] C. Wyman, S. Decker, M.E. Himmel, J.W. Brady, C.E. Skopec, L. Viikari, Hydrolysis of cellulose and hemicellulose, 1 (2005) 1023-1062.
    [117] P. Lu, G. Almeida, P. Perre, TGA-FTIR Analysis of Torrefaction of Lignocellulosic Components (cellulose, xylan, lignin) in Isothermal Conditions over a Wide Range of Time Durations, BioResources 10 (2015). https://doi.org/10.15376/biores.10.3.4239-4251.
    [118] X. Yang, D. Jiang, X. Cheng, F. Marrakchi, C. Yuan, Z. He, S. Wang, A. Zheng, Nitrogen transfer mechanism research on the co- pyrolysis macroalgae with polyethylene, Sustainable Energy Technologies and Assessments 51 (2022) 101886. https://doi.org/https://doi.org/10.1016/j.seta.2021.101886.
    [119] D. Chen, A. Gao, K. Cen, J. Zhang, X. Cao, Z. Ma, Investigation of biomass torrefaction based on three major components: Hemicellulose, cellulose, and lignin, Energy Conversion and Management 169 (2018) 228-237. https://doi.org/https://doi.org/10.1016/j.enconman.2018.05.063.
    [120] E. Valdez, Tabil G. Lope, Mupondwa Edmund, Cree Duncan, Moazed Hadi, Energies, 2021.
    [121] F. Hajabdollahi, Z. Hajabdollahi, H. Hajabdollahi, Soft computing based multi-objective optimization of steam cycle power plant using NSGA-II and ANN, Applied Soft Computing 12(11) (2012) 3648-3655. https://doi.org/https://doi.org/10.1016/j.asoc.2012.06.006.
    [122] J. Oyekale, M. Petrollese, G. Cau, Multi-objective thermo-economic optimization of biomass retrofit for an existing solar organic Rankine cycle power plant based on NSGA-II, Energy Reports 6 (2020) 136-145. https://doi.org/https://doi.org/10.1016/j.egyr.2019.10.032.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE