簡易檢索 / 詳目顯示

研究生: 鄭又銘
Cheng, Yo-Ming
論文名稱: 緩坡方程式之解析
Analytic solutions of the mild-slope equation
指導教授: 李兆芳
Lee, Jaw-Fang
學位類別: 博士
Doctor
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 130
中文關鍵詞: 解析解緩坡方程式
外文關鍵詞: analytic solution, mild-slope equation
相關次數: 點閱:118下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 緩坡方程式已普遍應用於近岸波場數值計算,然而由於係數為超越函數之故,其解析解較少被提出。本文提出Berkhoff(1972)緩坡方程式的解析解,考慮求解問題有二:一為波浪斜向入射平面變水深地形,一為波浪通過變水深淺灘上方圓柱型島嶼。針對第一個問題以複變函數表示斜向波浪運動效應而將二維平面問題簡化一個維度,隨後對控制方程式中超越函數係數進行Taylor展開使成為羃級數形式,並應用Frobenius級數解法配合邊界條件得到解析解。針對第二個問題本文將求解領域分為外圍等水深開放性海域及內圍淺灘上方海域。外圍等水深海域控制方程式為Helmholtz方程式,解的形式早已被求出;內圍變水深淺灘海域則以Berkhoff(1972)的緩坡方程式為求解對象,待控制方程式之超越函數係數被展開為Taylor級數後利用Frobenius級數解法配合邊界條件求得解析解。經由和數值解以及其它解析解的比較顯示本文解析解可得到正確結果。目前為止緩坡方程式解析解大多受限於淺水波條件或特定水深地形,本文方法則可求解大範圍週期波浪入射各種簡單變水深地形之散射波場,應用上受到較少限制。

    Mild-slope equations have been widely applied to calculate linear wave fields in engineering, mainly solved by using numerical methods. Analytic solutions of the mild-slope equations are rarely proposed, however, partially due to the existence of transcendental coefficients in the equations. In this study, analytic solutions of Berkhoff’s(1972) mild-slope equation are presented concerning two different sets of boundary-value problem which are often taken as verifying subjects for numerical models of the mild-slope equations. Dimensions for the problem of wave obliquely incident to plane topography of varying water depth is reduced to one by assuming the appearance of spatially periodic wave motion in lateral direction. The transcendental coefficients in the governing equation are then expanded into series forms, and the Frobenius method is applied to yield an analytic solution. In dealing with the problem of wave scattering around a circular island mounted on a submerged shoal of varying water depth, wave field in the open sea of constant water depth is governed by the Helmholtz equation, while the mild-slope equation is solved in the region of varying water depth between the island and open sea. The transcendental coefficients in governing equation are expanded into Taylor series to allow the usage of the Frobenius method, as proceded in the first problem, in order to obtain an analytic solution. The present method is proved as valid while comparing to numerical and other analytic solutions. While previous analytic solutions for the mild-slope equations are mostly restricted to shallow water wave condition and specific topographies of varying water depth, the present method may be regarded as a more general tool in seeking analytic solutions of the mild-slope equation, as no prior assumption is set on wave condition and topography to the boundary-value problems in consideration.

    中文摘要 I ABSTRACT III 謝誌 V 目錄 VII 圖目錄 IX 符號說明 XVII 第一章 導論 1 1.1 前言 1 1.2 前人研究 2 1.3 研究方法 6 1.4 本文內容 6 第二章 波浪斜向入射平面變水深地形 9 2.1 問題描述 9 2.2 求解過程 12 2.3 計算結果與討論 16 2.3.1. 數值求解離散過程 17 2.3.2. 解析解與數值解之比較 18 2.3.3. 解析解與Ray theory之比較 42 第三章 波浪入射變水深淺灘上圓柱島嶼 53 3.1 問題描述 53 3.2 求解過程 56 3.3 計算結果與討論 62 3.3.1. 波浪通過錐狀淺灘上之圓柱島嶼 63 3.3.2. 波浪通過拋物線型淺灘上圓柱島嶼 80 第四章 結論 109 4.1 波浪斜向入射平面變水深地形 109 4.2 波浪通過變水深淺灘上方圓柱型島嶼 110 參考文獻 113 附錄A 119 A.1 k2之各階導數值 119 A.2 lnCCg之各階導數值 125

    1. Abramowitz, M. and Stegun, J. A., 1972. Handbook of Mathematical Functions, Dover.
    2. Agnon, Y., Pelinovsky, E., 2001. Accurate refraction-diffraction equations for water waves on a variable-depth rough bottom. J. Fluid Mech. 449, 301-311.
    3. Berkhoff, J.C. W., 1972. Computation of combined refraction-diffraction. Proc. 13th Intl Conf. On Coastal Engng, July 1972, Vancouver, Canada, ASCE, 471-490.
    4. Berkhoff, J.C. W., 1976. Mathematical model for simple harmonic linear water waves, wave diffraction and refraction. Doctoral Thesis, Delft Technical University, Netherlands.
    5. Bettess, P., Zienkiewicz, O.C., 1977. Diffraction and refraction of surface waves using finite and infinite elements. Int. J. Number. Methods Eng. 2, 1271.
    6. Booij, N., 1981. Gravity waves on waver with non-uniform depth and current. Rep. No. 81-1, Dept. Civil Engrg., Delft Univ. of Tech., Delft, The Netherlands.
    7. Booij, N., 1983. A note on the accuracy of mild-slope equation. Coastal Engineering, Vol. 7, 191-203.
    8. Boyce, W. E., Diprima, R. C., 2001. Elementary Differential Equations and Boundary Value Problems. Wiley.
    9. Chandrasekera, C. N., Cheung, K. F., 1997. Extended linear refraction-diffraction model. J. Waterw. Port Coast. Ocean Eng. 123, 280-286.
    10. Chamberlain, P. G., Porter, D., 1995. The modified mild-slope equation. J. Fluid Mech. 291, 393-407.
    11. Ehrenmark, U. T., Williams, P. S., 2001. Wave parameter tuning for the application of the mild-slope equation on steep beaches and in shallow water. Coastal Eng. 42, 17-34.
    12. Fujima, K., Goto, C., 1994. Characteristics of long waves trapped by conical island. Proc. Japan Soc. Of Civil Engrs. 497(II), 101-110 in Japanese.
    13. Fujima, K., Yuliadi, D., Goto, C., Hayashi, K., Shigemura, T., 1995. Characteristics of long waves trapped by conical island. Coastal Eng. In Japan 38, 111-132.
    14. Homma, S., 1950. On the behaviour of seismic sea waves around circular island. Geophys. Mag. 21, 199-208.
    15. Houston, J. R., 1981. Combined refraction and diffraction of short waves using the finite element method. Appl. Ocean Res. 3, 163-170.
    16. Hsu, T. W. and Wen, C.C., 2001. A Parabolic Equation Extended to Account for Rapidly Varying Topography. Ocean Engineering, Vol. 28, 1479-1498.
    17. Hsu, T. W., Lin, T. Y., Wen, C. C., Ou, S. H., 2006. A complementary mild-slope equation derived using higher-order depth function for waves obliquely propagating on sloping bottom. Physics of Fluid 18, online. DOI: 10.1063/1.2337734.
    18. Hunt, J. N., 1979. .Direct solution of wave dispersion equation. J. Waterw. Port Coast. Ocean Div. Proc. ASCE 105, 457-459.
    19. Jonsson, I. G., Skovgaard, O., Brink-Kjaer, O., 1976. Diffraction and refraction calculations for waves incident on an island. J. Mar. Res. 34, 469-496.
    20. Kanoglu, U., Synolakis, C. E., 1998. Long wave runup on piecewise linear topographies. J. Fluid Mech. 374, 1-28.
    21. Kirby, J. T., 1986a. A General Wave Equation for Waves over Rippled Beds. Journal of Fluid Mechanics, Vol. 162, 171-186.
    22. Kirby, J. T., 1986b. Rational Approximations in the Parabolic Equation Method for Water Waves. Coastal Engineering, Vol. 10, 355-378.
    23. Lee, J. J., Ayre, R. M., 1981. Wave propagation over a rectangular trench. J. Fluid Mech. 110, 335-347.
    24. Li, B., 1994a. A generalized conjugate-gradient model for the mild slope equation. Coast. Eng. 23, 215-225.
    25. Li, B., 1994b. An evolution equation for water-waves. Coast. Eng. 23, 227-242.
    26. Li, B., Fleming, C. A., 1999. Modified mild-slope equatins for wave propagation. Proc. Inst. Civ. Eng., Water Marit. Eng. 136, 43-60.
    27. Lin, P. Z., 2004. A compact numerical alogorithm for solving the time-dependent mild slope equation. Int. J. Numer. Methods Fluids 45, 625-642.
    28. Liu, H. -W., Lin, P. Z., Shankar, N. J., 2004. An analytical solution of the mild-slope equation for waves around a circular island on a paraboloidal shoal. Coast. Eng. 51, 421-437.
    29. MacCamy, R. C., Fuchs, R. A., 1954. Wave forces on piles: a diffraction theory. Tech. Mem., Vol. 69. US Army Corps of Engineering, Beach Erosion Board, Washington, DC.
    30. Massel, S.R., 1993. Extended Refraction-Diffraction Equation for Surface Waves. Coastal Engineering, Vol. 19, 97-126.
    31. Mei, C. C., 1978. Numerical methods in water-wave diffraction and radiation. Ann. Rev. Fluid Mech. 10, 393-416.
    32. Mei, C. C., 1989. The Applied Dynamics of Ocean Surface Waves. World Scientific.
    33. Miles, J. W., Chamberlain, P. G., 1998. Topographical scattering of gravity waves. J. Fluid Mech. 361, 175-188.
    34. Nardini, D., Brebbia, C.A., 1983. A new approach to free vibration analysis using boundary elements. Appl. Math. Modeling 7, 157-162.
    35. Panchang, V. G., Cushman-Roisin, B., Pearce, B. R., 1988. Combined refraction-diffraction of short-waves in large coastal regions. Coastal Engng. 12, 133-156.
    36. Porter, D., 2003. The mild-slope equations. J. Fluid Mech. 494, 51-63.
    37. Porter, D., Staziker, D. J., 1995. Extensions of the mild-slope equation. J. Fluid Mech. 300, 367-382.
    38. Radder, A.C., 1979. On the Parabolic Equation Method for Water Wave Propagation. Journal of Fluid Mechanics, Vol. 95, No. 1, 159-176.
    39. Smith, R., Sprinks, T., 1975. Scattering of surface waves by a conical island. J. Fluid Mech. 72, 373-384.
    40. Sommerfeld, A., 1949. Partial Differential Equations in Physics. Academic Press, New York.
    41. Spiegel, M. R., 1981. Applied Differential Equations. Prentice-Hall, Englewood Cliffs, NJ.
    42. Suh, K. D., Lee, C., Park, W. S., 1997. Time-dependent equations for wave propagation on rapidly varying topography. Coast. Eng. 32, 91-117.
    43. Tsay, T.-K., Liu, P. L. –F., 1983. A finite element model for wave refraction and diffraction. Appl. Ocean Res. 5, 30-37.
    44. Vastano, A. C., Reid, R. O., 1976. Tsunami response for islands: verification of a numerical procedure. J. Mar. Res. 25, 129-139.
    45. Watanabe, A. and Maruyama, K., 1986. Numerical Modeling of Nearshore Wave Field under Combined Refraction, Diffraction and Breaking. Coastal Engineering in Japan, Vol. 29, 19-39.
    46. Yu, X. P., Zhang, B. Y., 2003. An extended analytic solution for combined refraction and diffraction of long waves over circular shoals. Ocean Eng. 30, 1253-1267.
    47. Zhang, Y. L., Zhu, S. -P., 1994. New solutions for the propagation of long water waves over variable depth. J. Fluid Mech. 278, 391-406.
    48. Zhu, S. -P., 1993. A new DRBEM model for wave refraction and diffraction. Eng. Anal. Bound. Elem. 12, 261-274.
    49. Zhu, S. -P., Liu, H. -W., Chen, K., 2000. A general DRBEM model for wave refraction and diffraction. Eng. Anal. Bound. Elem. 24, 377-390.
    50. Zhu, S. -P., Zhang, Y. L., 1996. Scattering of long waves around a circular island mounted on a conical shoal. Wave Motion 23, 353-362.
    51. 許泰文,2003。近岸水動力學。中國土木水利工程學會。

    下載圖示 校內:立即公開
    校外:2007-07-05公開
    QR CODE