簡易檢索 / 詳目顯示

研究生: 江承堯
Chaing, Chang-Yao
論文名稱: Annexin II於巨噬細胞進行細胞移動與吞噬凋亡細胞過程所扮演的角色: 研究抗SARS冠狀病毒棘蛋白區域2抗體的病理角色
Role of Annexin II on the Cell Migration and Phagocytosis of Apoptotic Cells by Macrophages: Study on the Pathological Effects of Antibodies against SARS-Coronavirus Spike Protein Domain 2
指導教授: 林以行
Lin, Yee-Shin
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 57
中文關鍵詞: 吞噬作用凋亡細胞細胞移動冠狀病毒
外文關鍵詞: apoptotic cell, annexin II, cell migration, phagocytosis, U937, caspase-3 activity assay
相關次數: 點閱:138下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 凋亡細胞受到巨噬細胞的清除是人體重要的恆定機制,如果巨噬細胞無法有效的將凋亡細胞清除就有可能會造成自體免疫疾病。實驗室先前的研究發現SARS病人的血清中有自體抗體的存在並且這種抗體可以與人類的肺上皮細胞發生交互作用。競爭結合的實驗分析指出SARS冠狀病毒棘蛋白區域2 (S2) 確實有交互作用的抗原決定位存在,進一步的實驗鑑定出數個自體抗原。在這些自體抗原之中,annexin II 在早先的研究中就被證實與巨噬細胞吞噬凋亡細胞有重要的相關。我們假設anti-S2抗體可能會與巨噬細胞表面的annexin II結合並且會去抑制巨噬細胞對凋亡細胞的清除能力。人類的單核球細胞株THP-1與U937利用 phorbol 12-myristate 13-acetate (PMA) 活化24到96小時可以促進這些細胞株annexin II蛋白質的表現增加。伴隨著annexin II的表現量上升,活化的細胞株吞噬凋亡細胞的能力也隨之增強。我們利用PMA活化的U937吞噬凋亡細胞後,偵測caspase-3的活性,及利用曠時攝影術研究老鼠腹腔巨噬細胞對凋亡細胞的吞噬作用,來了解anti-S2及anti-annexin II抗體對巨噬細胞所產生的抗吞噬現象。更進一步的發現anti-S2及anti-annexin II的抗體可以抑制小鼠腹腔巨噬細胞的移動,並且凋亡細胞與活化U937細胞株的黏附也會受到anti-S2及anti-annexin II抗體所抑制。因此我們認為巨噬細胞的移動與和凋亡細胞的黏附受到干擾,為anti-S2抗體產生抑制巨噬細胞吞噬能力的主要原因。然而這個抗吞噬的機制與anti-S2抗體傳遞訊號到細胞內都是有待研究的方向。是否對抗S2抗體在SARS免疫致病機轉上扮演重要的角色,是有待我們去釐清的。

    Apoptotic cell clearance by phagocytes is a homeostasis mechanism in human. Failure of phagocytes to uptake apoptotic cells may cause autoimmune disease. Pervious study in our laboratory showed that in SARS patient sera, there were autoantibodies that reacted with human lung epithelial cells. Preabsorption and binding assays indicated the existence of cross-reactive epitopes on SARS-CoV spike protein domain 2 (S2). Several candidate autoantigens have been identified. Among them, annexin II has been shown to play an important role in phagocytosis of apoptotic cells by macrophage. We hypothesize that anti-S2 antibody might bind to annexin II on macrophages and inhibit their phagocytic activity to apoptotic cells. Human monocytic cell lines THP-1 and U937 were activated by phorbol 12-myristate 13-acetate (PMA) for 24 to 96 h, which caused an increase in the annexin II expression. An increase in the ability of activated monocytic cells to phagocytose apoptotic cells was also observed. We showed anti-phagocytic effect of anti-S2 antibodies in PMA-activated U937 cells by caspase-3 activity detection and in mouse peritoneal macrophages by time-lapse microscopy. Furthermore, anti-S2 and anti-annexin II antibodies inhibited the migration of peritoneal macrophage. Anti-S2 and anti-annexin II antibodies inhibited the binding of apoptotic cells to PMA-activated U937 cells. We propose that the inhibition of migration and binding to apoptotic cells of macrophage is involved in the anti-phagocytic effect of anti-S2 antibody. The mechanism and signaling of anti-S2-mediated inhibitory effect on phagocytes need to be investigated. Moreover, whether the anti-phagocytic activity of anti-S2 antibodies plays a role in SARS immunopathologic mechanism remains unresolved.

    中文摘要……………………………………………………………I 英文摘要……………………………………………………………II 致謝…………………………………………………………………III 目錄…………………………………………………………………IV 圖目錄………………………………………………………………VI 縮寫檢索表…………………………………………………………VII 緒論……………………………………………………………………1 特定目標與實驗設計……………………………………………………5 實驗材料………………………………………………………………7 A. 實驗動物…………………………………………………………7 B. 儀器與藥劑試劑…………………………………………………7 C. 耗材…………………………………………………………7 實驗方法…………………………………………………………8 A. 細胞培養…………………………………………………………8 B. SARS CoV spike protein 的表現與純化……………………9 C. Anti-S2 抗體的純化與製備.............................................10 D. 蛋白質定量………............................................................................11 E. 蛋白質電泳…………………………………………………………12 F. 分離小鼠腹腔巨噬細胞.....................................................................12 G. 誘導細胞凋亡並標示綠色螢光……………………………………13 H. 免疫酵素連結吸附分析 (ELISA)…………………………………13 I. 免疫沉澱法 (IP, immunoprecipitation)………………………14 IV J. 吞噬能力測試……………………………………………………15 K. 細胞移動能力測試…………………………………………15 L. 巨噬細胞與凋亡細胞黏附能力測試………………………………16 M. Caspase-3 活性分析………………………………………………16 N. 統計方法……………………………………………………………17 結果 1. SARS-CoV spike protein domain 2 的純化……………………………18 2. 抗SARS-CoV spike protein domain 2之抗體製備……………………18 3. PMA活化巨噬細胞使得巨噬細胞表面的annexin II蛋白質 表現增加…………………………………………………………………19 4. PMA活化的巨噬細胞吞噬凋亡細胞的能力增加………………19 5. Anti-S2抗體結合到巨噬細胞表面上的能力與巨噬細胞表面 表達annexin II的量有關連………………………………………20 6. Anti-S2抗體與巨噬細胞的annexin II發生交互作用…………………20 7. Anti-S2及anti-annexin II抗體結合到巨噬細胞上並且抑制巨 噬細胞吞噬凋亡細胞的能力……………………………………………21 8. Anti-S2及anti-annexin II抗體抑制老鼠腹腔巨噬細胞的細胞移動……21 9. Anti-S2及anti-annexin II抗體抑制巨噬細胞與凋亡細胞黏附的能力…22 討論…………………………………………………………………………23 參考文獻……………………………………………………………………27 圖……………………………………………………………………………38 附錄…………………………………………………………………………49 自述…………………………………………………………………………57

    Asherson R.A., and Cervera R. Antiphospholipid antibodies and infections. Ann. Rheum. Dis., 62:388-393, 2003

    Babiychuk, E.B., and Draeger, A. Annexin in cell membrane dynamics Ca2+-regulated association of lipid microdomains. J. Cell Biol., 150:1113-1124, 2000

    Brichory F.M., Misek D.E., Yim A.M., Krause M.C., Giordano T.J., Beer D.G., and Hanash S.M. An immune response manifested by the common occurrence of annexins I and II autoantibodies and high circulating levels of IL-6 in lung cancer. Pro. Natl. Acad. Sci. USA., 98:9824-9829, 2001

    Brownstein C., Deora A.B., Jacovina A.T., Weintraub R., Gertler M., Khan K.M., Falcone D.J., and Hajjar K.A. Annexin II mediates plasminogen-dependent matrix invasion by human monocytes: enhanced expression by macrophages. Blood, 103:317-324, 2004

    Cesarman-Maus, G., Rios-Luna, N.P., Deora, A.B., Huang, B., Villa, R., Del Carmen Cravioto, M., Alarcon-Segovia, D., Sanchez-Guerrero, and J., Hajjar, K.A. Autoantibodies against the fibrinolytic receptor, annexin 2, in antiphospholipid syndrome. Blood (In press), 2006

    Chan H.L., Kwan A.C., To K.F., Lai S.T., Chan P.K., Leung W.K., Lee N., Wu A., and Sung J.J. Clinical significance of hepatic derangement in severe acute respiratory syndrome. World J. Gastroenterol., 11:2148-2153, 2005

    Chen W., Xu Z., Mu J., Yang L., Gan H., Mu F., Fan B., He B., Huang S., You B., Y.K. Yang, X.J. Tang, Qiu L., Qiu Y., Wen J., Fang J.Q., and Wang J.
    Antibody response and viraemia during the course of severe acute respiratory syndrome (SARS) associated coronavirus infection. J. Med. Micro., 53:435-438, 2004

    Chen Z.W., Zhang L.Q., Qin C., Ba L., Yi C.E., Zhang F., Wei Q., He T., Yu W., Yu J., Gao H., Tu X., Gettie A., Farzan M., Yuen K.Y., and Ho D.D. Recombinant modified vaccinia virus ankara expressing the spike glycoprotein of severe acute respiratory syndrome coronavirus induces protective neutralizing antibodies primarily targeting the receptor binding region. J. Virol., 79:2678-2688, 2005

    Chiang Y., Rizzino A., Sibenaller Z.A., Wold M.S., and Vishwanatha J.K. Specific down-regulation of annexin II expression in human cells interferes with cell proliferation. Mol. Cell Biochem., 199:139-147, 1999

    Corapi W.V., Olsen C.W., and Scott F.W. Monoclonal antibody analysis of neutralization and antibody-dependent enhancement of feline infectious peritonitis virus. J. Virol., 66:6695-6705, 1992

    Datta S.K. Production of pathogenic antibodies: Cognate interactions between autoimmune T and B cells. Lupus, 7:591-596, 1998

    Fan X., Krahling S., Smith D., Williamson P., and Schlegel R.A. Macrophage surface expression of annexins I and II in the phagocytosis of apoptotic lymphocytes. Mol. Biol. Cell, 15:2863-2872, 2004

    Feng Y., and Walsh C.A. Protein-protein interactions, cytoskeletal regulation and neuronal migration. Nat. Rev., 2:408-416, 2001

    Deora A. B., Kreitzer G., Jacovina A. T., and Hajjar K. A. An annexin 2 phosphorylation switch mediates p11-dependent translocation of annexin 2 to the cell surface. J. Biol. Chem., 279:43411-43418, 2004

    George J., Gilburd B., Hojnik M., Levy Y., Langevitz P., Matsuura E., Koike T., and Shoenfeld Y. Target recognition of beta2-glycoprotein I (beta2GPI)-dependent anticardiolipin antibodies: evidence for involvement of the fourth domain of GPI in antibody binding 1. J. Immunol., 160:3917-3923, 1998

    Gilmore, W.S., Olwill, S., McGlynn, H., and Alexander, H.D. Annexin A2 expression during cellular differentiation in myeloid cell lines. Biochem. Soc. Trans. 32:1122-1123, 2004

    Gómez-Moutón C., Ana Lacalle R., Mira E., Jiménez-Baranda S., Barber D.F., Carrera A.C., Martínez-A.C., and Mañes S. Dynamic redistribution of raft domains as an organizing platform for signaling during cell chemotaxis. J. Cell Biol., 164:759-768, 2004

    Gosert R., Kanjanahaluethai A., Egger D., Bienz K., and Baker S.C. RNA replication of mouse hepatitis virus takes place at double-membrane vesicles. J. Virol., 76:3697-3708, 2002

    Guan Y., Zheng B.J., He Y.Q., Liu X.L., Zhuang Z.X., Cheung C.L., Luo S.W., Li P.H., Zhang L.J., Guan Y.J., Butt K.M., Wong K.L., Chan K.W., Lim W., Shortridge K.F., Yuen K.Y., Peiris J.S., and Poon L.L. Isolation and characterization of viruses related to the SARS coronavirus from animals in southern China. Science, 302:276-278, 2003

    Gveric ́ D., Herrera B.M., and Cuzner M.L. tPA receptors and the fibrinolytic response in multiple sclerosis lesions. J. Pathol., 166:1143-1151, 2005

    Gu, J., Gong, E., Zhang, B., Zheng, J., Gao, Z., Zhong, Y., Zou, W., Zhan, J., Wang, S., Xie, Z., Zhuang, H., Wu, B., Zhong, H., Shao, H., Fang, W., Gao, D., Pei, F., Li, X., He, Z., Xu, D., Shi, X., Anderson, and V.M., Leong, A.S. Multiple organ infection and the pathogenesis of SARS. J. Exp. Med., 202:415-424, 2005

    Hajjar K.A., and Krishnan S. Annexin II: a mediator of the plasmin/plasminogen activator system. Trends Cardiovasc. Med., 9:128-138, 1999

    Hooks J.J., Percopo C., Wang Y., and Detrick B. Retina and retinal pigment epithelial cell autoantibodies are produced during murine coronavirus retinopathy. J. Immunol., 151:3381-3389, 1993

    Hopfer H., Maron R., Butzmann U., Helmchen U., Weiner H.L., and Kalluri R. The importance of cell-mediated immunity in the course and severity of autoimmune anti-glomerular basement membrane disease in mice. FASEB J., 17:860-868, 2003

    Huang K.J., Su I.J., Theron M., Wu Y.C., Lai S.K., Liu C.C., and Lei H.Y. An interferon--related cytokine storm in SARS patients. J. Med. Virol., 75:185-194, 2004

    Huynh M.L., Fadok V.A., and Henson P.M. Phosphatidylserine-dependent ingestion of apoptotic cells promotes TGF-beta1 secretion and the resolution of inflammation. J. Clin. Invest., 109:41-50, 2002

    Kabarowski J. H.S., Zhu K., Le L.Q., Witte O.N., and Xu Y. Lysophosphatidylcholine as a ligand for the immunoregulatory receptor G2A. Science, 293:702-705, 2001

    Kaplan C., Morinet F., and Cartron J. Virus-induced autoimmune thrombocytopenia and neutropenia. Semin. Hematol., 29:34-44, 1992

    Keng C.T., Zhang A., Shen S., Lip K.M., Fielding B.C., Timothy Tan H.P., Chou C.F., Loh C.B., Wang S., Fu J., Yang X.M., Lim S.G., Hong W.J., and Tan Y. J. Amino acids 1055 to 1192 in the S2 region of severe acute respiratory syndrome coronavirus S protein induce neutralizing antibodies: implications for the development of vaccines and antiviral agents. J. Virol., 79:3289-3296, 2005

    Lai M.M.C. SARS virus: this beginning of the unraveling of a new coronavirus. J. Biomed. Sci., 10:664-675, 2003

    Lang, Z.W., Zhang, L.J., Zhang, S.J., Meng, X., Li, J.Q., Song, C.Z., Sun, L., Zhou, Y.S., and Dwyer, D.E. A clinicopathological study of three cases of severe acute respiratory syndrome (SARS). Pathology, 35:526-531, 2003

    Lavi E., Wang Q., Weiss S.R., and Gonatas N.K. Syncytia formation induced by coronavirus infection is associated with fragmentation and rearrangement of the Golgi apparatus. Virology, 221:325-334, 1996

    Lauber K., Blumenthal S.G., Waibel M., and Wesselborg S. Clearance of apoptotic cells: getting rid of the corpses. Mol. Cell, 14:277-287, 2004

    Lin Y.S., Lin C.F., Fang Y.T., Kuo Y.M., Liao P.C., Yeh T.M., Hwa K.Y., Shieh C.C., Yen J.H., Wang H.J., Su I.J., and Lei H.Y. Antibody to SARS-associated coronavirus spike protein domain 2 cross-reacts with lung epithelial cells and causes cytotoxicity. Clin. Exp. Immunol., 141:500-508, 2005

    Liu C., Xu H.Y., and Liu D.X. Induction of caspase-dependent apoptosis in cultured cells by the avain coronavirus infectious bronchitis virus. J. Virol., 75:6402-6409, 2001

    Marten N.W., Stohlman S.A., and Bergmann C.C. MHV infection of the CNS: mechanisms of immune-mediated control. Viral Immunol., 14:1-18, 2001

    Hayes M.J., Bailly D.S. and Moss S.E. Regulation of actin dynamics by annexin 2. EMBO J., 25: 1816-18126, 2006

    Mayran M., Parton R.G., and Gruenberg J. Annexin II regulates multivesicular endosome biogenesis in the degradation pathway of animal cells. EMBO J., 13:3242-3253, 2003

    Nal B., Chan C., Kien F., Siu L., Tse J., Chu K., Kam J., Staropoli I., Crescenzo-Chaigne B., Escriou N., Sylvie van der Werf, Yuen K.Y. and Altmeyer R. Differential maturation and subcellular localization of severe acute respiratory syndrome coronavirus surface proteins S, M and E. J. Gen. Virol., 86:1423-1434, 2005

    Nicholls J.M., Poon L.L., Lee K.C., Ng W.F., Lai S.T., Leung C.Y., Chu C.M., Hui P.K., Mak K.L., Lim W., Yan K.W., Chan K.H., Tsang N.C., Guan Y., Yuen K.Y., Peiris J.S. Lung pathology of fatal severe acute respiratory syndrome. Lancet, 361:1773-177, 2003

    Nicholls, J., Dong, X.P., Jiang, G., and Peiris, M. SARS: clinical virology and pathogenesis. Respirology, 8:S6-S8, 2003

    Oliferenko S., Paiha K., Harder T., Gerke V., Schwarzler C., Schwarz H., Beug H., Gunthert U., and Huber L.A. Analysis of CD44-containing lipid rafts: recruitment of annexin II and stabilization by the actin cytoskeleton. J. Cell Biol., 146:843-854, 1999

    Orlando K.A., Stone N.L., and Pittman R. N. Rho kinase regulates fragmentation and phagocytosis of apoptotic cells. Exp. Cell Res., 312:5-15, 2006

    Paradela, A., Bravo, S.B., Henriquez, M., Riquelme G, Gavilanes F, Gonzalez-Ros JM, and Albar JP. Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts. J. Proteome Res., 4:2435-2441, 2005

    Parenteand L., and Solito E. Annexin 1: more than an anti-phospholipase protein. Inflamm. Res., 53:125-132, 2004

    Peiris J.S.M., Guan Y., and Yuen K.Y. Severe acute respiratory syndrome. Nat. Med., 10:88-97, 2004

    Peiris J.S., Chu C.M., Cheng V.C., Chan K.S., Hung I.F., Poon L.L., Law K.I., Tang B.S., Hon T.Y., Chan C.S., Chan K.H., Ng J.S., Zheng B.J., Ng W.L., Lai R.W., Guan Y., and Yuen K.Y. Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study. Lancet, 361:1767-1772, 2003

    Peiris, J.S.M., Lai, S.T., Poon, L.L.M., Guan, Y., Yam, L.Y.C., Lim, W., Nicholls, J., Yee, W.K.S., Yan, W.W., Cheung, M.T., Cheng, V.C.C, Chan, K. H., Tsang, D.N.C., Yung, R.W.H., Ng, T.K., Yuen, K.Y. and SARS study group. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet, 361:1319-1325, 2003

    Pradhan D., Krahling S., Williamson P., and Schlegel R.A. Multiple systems for recognition of apoptotic lymphocytes by macrophages. Mol. Biol. Cell, 8:767-778, 1997

    Reynolds J., Moss J., Duda M.A., Smith J., Karkar A.M., Macherla V., Shore I., Evans D.J., Woodrow D.F., and Pusey C.D. The evolution of crescentic nephritis and alveolar haemorrhage following induction of autoimmunity to glomerular basement membrane in an experimental model of Goodpasture’s disease. J. Pathol., 200:118-129, 2003

    Roberts A., Paddock C., Vogel L., Butler E., Zaki S., and Subbarao K. Aged BALB/c mice as a model for increased severity of severe acute respiratory syndrome in elderly humans. J. Virol., 15:5833-5838, 2005

    Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Liffick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., and Bellini W.J. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science, 30:1394-1398, 2003

    Sehgal P.B. Plasma membrane rafts and chaperones in cytokine/STAT signaling. Acta Biochim. Pol., 50:583-594, 2003

    Serrador J. M., Nieto M., and Madrid F. S. Cytoskeletal rearrangement during migration and activation of T lymphocytes. Trends Cell Biol., 9:228-232, 1999

    Statkute L., Traynor A., Oyama Y., Yaung K., Verda L., Krosnjar N., and Burt R. K. Antiphospholipid syndrome in patients with systemic lupus erythematosus treated by autologous hematopoietic stem cell transplantation. Blood, 106:2700-2709, 2005

    Tatenhorst L., Rescher U., Gerke V. and Paulus W. Knockdown of annexin 2 decreases migration of human glioma cells in vitro. Neuropathology and Applied Neurobiology, 32:271–277, 2006

    Van Reeth K., Labarque G., Nauwynck H., and Pensaert M. Differential production of proinflammatory cytokines in the pig lung during different respiratory virus infection: correlations with pathogenicity. Res. Vet. Sci., 67:47-52, 1999

    Vicente-Manzanares M., Webb D. J., and Horwitz A.R. Cell migration at a glance. J. Cell Sci., 118:4917-4919, 2005

    Weiss R.C., and Scott F.W. Antibody-mediated enhancement of disease in feline infectious peritonitis: comparisons with dengue hemorrhagic fever. Comp. Immunol. Microbiol. Infect. Dis., 4:175-189, 1981

    Wilson C.B., and Smith R.C. Goodpasture’s syndrome associated with influenza A2 virus infection. Ann. Inter. Med., 76:91-94, 1972

    Wong C.K., Lam C.W., Wu A.K., Ip W.K., Lee N.L., Chan I.H., Lit L.C., Hui D.S., Chan M.H., Chung S.S., and Sung J.J. Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome. Clin. Exp. Immunol., 136:95-103, 2004

    Wright J.F., Kurosky A., Pryzdial E.L., and Wasi S. Host cellular annexin II is associated with cytomegalovitus particles isolated from cultured human fibroblasts. J. Virol., 69:4784-4791, 1995

    Xia Y., and Karin M. The control of cell motility and epithelial morphogenesis by Jun kinases. Cell Biol., 14:94-101, 2004

    Yamada A., Fujita N., Sato T., Okamoto R., Ooshio T., Hirota T., Morimoto K., Irie K., and Takai Y. Requirement of nectin, but not cadherin, for formation of claudin-based tight junctions in annexin II-knockdown MDCK cells. Oncogene, [Epub ahead of print]

    Yang Y.H., Huang Y.H., Chuang Y.H., Peng C.M., Wang L.C., Lin Y.T., and Chiang B.L. Autoantibodies against human epithelial cells and endothelial cells after severe acute respiratory syndrome (SARS)-associated coronavirus infection. J. Med. Virol., 77:1-7, 2005

    Zhang J., and McCrae K. R. Annexin A2 mediates endothelial cell activation by antiphospholipid/anti-beta2 glycoprotein I antibodies. Blood, 105:1964-1969, 2005

    Zandman-Goddard G., and Yehuda S. HIV and autoimmunity. Autoimmun. Rev., 1:329-337, 2002

    Zhong X.F., Yang H. H., Guo Z. F., W. Y. Fion Sin, Chen W., Xu J., Fu L., Wu J., Chun-Kit Mak G., Chak-Sum Cheng S., Yang Y. Z., Cao S. Y., Wong T. Y., Lai S. T., Xie Y., and Guo Z. B-cell responses in patients who have recovered from severe acute respiratory syndrome target a dominant site in the S2 domain of the surface spike glycoprotein. J. Virol., 79:3401-3408, 2005

    下載圖示 校內:2007-08-25公開
    校外:2007-08-25公開
    QR CODE