| 研究生: |
丁威柏 Ding, Wei-Po |
|---|---|
| 論文名稱: |
數值模擬結合基因演算法於奈米流體微流道散熱器之最佳化設計 Optimization design of micro-channel heat sink using nanofluid by numerical simulation coupled with genetic algorithm |
| 指導教授: |
楊玉姿
Yang, Yue-Tzu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 微流道散熱器 、奈米流體 、單相模型 、兩相模型 、基因演算法 、最佳化 |
| 外文關鍵詞: | Micro-channel heat sink, Nanofluid, Genetic algorithm, Optimization |
| 相關次數: | 點閱:135 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以單相與兩相模型模擬Al2O3/water奈米流體於均勻等熱通量三維微流道散熱器強制對流之數值計算。應用控制體積法數值求解強制對流奈米流體之橢圓、耦合、穩態之三維統御偏微分方程式。研究參數包含雷諾數(100≤Re≤400)、鰭片寬高比(0.375≤AR≤0.625)、奈米粒子體積濃度(0%≤φ≤4%)與進氣室的深度(0.8mm≤Lin≤1.2mm)。
首先以參考文獻中純水於微流道散熱器之數據做驗證,其結果相當吻合,平均誤差在4% 以內,更進一步延伸應用至奈米流體作為冷卻劑。文中比較兩種不同的微流道散熱器在等熱通量時的熱阻,模擬結果顯示B type微流道散熱器之熱阻較A type微流道散熱器來的好。在研究範圍內,微流道散熱器的熱阻隨著奈米粒子體積濃度 與雷諾數Re的增加而降低。另一方面,由奈米流體之壓降的結果顯示,寬高比對於壓降的影響較奈米粒子體積濃度的影響來得顯著。而且發現兩相模型在熱場上與單相模型有很大的差異,但流場方面和單相模型所得到曲線幾乎重合。
本研究以多目標函數並結合反應曲面法(RSM)實驗設計方法來設計目標參數,並於基因演算法(GA)耦合計算流體力學(CFD)作為最佳化的工具。三個設計參數包含鰭片長寬比、奈米粒子濃度和進氣室的深度以固定雷諾數來最佳化。以熱阻為目標函數,並與三設計參數產生關係式。此後利用迴歸函數預測A type微流道散熱器與 B type 微流道散熱器之熱阻,其結果與數值結果相當接近,其誤差分別在3.9% 和3.2%內,奈米流體最佳化後的寬高比是提升的代表著更窄的微流道以及更好的熱交換能力。經由形狀最佳化,目標函數相對於參考的幾何形狀下已成功獲得改進。
Numerical simulations by single-phase and two-phase models of Al2O3/Water nanofluid forced convection in a three-dimensional micro-channel heat sink (MCHS) with uniform heat flux are investigated. The parameters studied include fins aspect ratio, the particle volume fractions and the inlet plenum lengths. Two different types of MCHS are considered and their thermal resistances are compared. In the range of parameters in the study, the thermal resistance of MCHS considered is found to be decrease with the increase of the particle concentration and Reynolds number. The multi-parameter constrained optimization procedure integrating the design of experiments (DOE), response surface methodology (RSM), genetic algorithm (GA) and computational fluid dynamics (CFD) is proposed to design the geometric configuration for two different types of MCHS. The thermal resistances predicted by regression function for two different types of MCHS are in good agreement with numerical results of CFD by the difference within 3.9% and 3.2%, respectively. Through the shape optimization, the objective function is successfully improved with respect to the reference geometry.
[1]Vinodhan, V. L., Rajan, K. S., “Computational analysis of new microchannel heat sink configurations,” Energy Conversion and Management, Vol. 86, pp.595-604, 2014.
[2]Choi, S.U.S., “Enhancing thermal conductivity of fluids with nanoparticles,” ASME FED, Vol.231/MD66, pp.99-105, 1995.
[3]Eastman, J. A., Choi, U.S., Li, S., Thompson, L.J., Lee, S., “Enhanced thermal conductivity through the development of nanofluids,” Materials Research Society Symposium-Proceedings, Vol. 457, pp.3-11, 1996.
[4]Lee, S., Choi, S.U.S., Li, S., Eastman, J. A, “Measuring thermal conductivity of fluids containing oxide nanoparticles,” Journal of Heat Transfer, Vol. 121, pp.280-289, 1999.
[5]Xie, H. Q., Wang, J. C., Xi, T. G., Liu, Y., Ai, F., Wu, Q. R., 2002. “Thermal conductivity enhancement of suspensions containing nanosized alumina particles,” J. Appl. Phys., Vol. 91, pp.4568-4572, 2002.
[6]Xuan, Y., Li, Q., “Investigation on convective heat transfer and flow features of nanofluids,” Journal of Heat Transfer, Vol. 125, pp.151–155, 2003.
[7]Wen, D., Ding, Y., “Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions,” International Journal of Heat and Mass Transfer, Vol. 47, pp. 51-81, 2004.
[8]Murshed, S. M. S., Leong, K.C., Yang, C., “Enhanced thermal conductivity of TiO2/water-based nanofluids,” International Journal of Thermal Sciences, Vol. 44, pp. 367-373, 2005.
[9]Yoo, D. H., Hong, K. S., Yang, H. S., “Study of thermal conductivity of nanofluids for the application of heat transfer fluids,” Thermochemica Acta, Vol. 455, pp. 66–69, 2007.
[10]Keblinski, P., Phillpot, S.R., Choi, S.U.S., Eastman, J.A., “Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids),” International Journal of Heat and Mass Transfer, Vol. 45, pp.855–863, 2002.
[11]Vajjha, R. S., Das, D. K., “Experimental determination of thermal conductivity of three nanofluids and development of new correlations,” International Journal of Heat Mass Transfer, Vol. 52, pp.4675-4682, 2009.
[12]Maxwell, J. C., Electricity and Magnetism, 1st Ed., Clarendon Press, Oxford, England, 1873.
[13]Duangthongsuk, W., Wongwises, S. “Measurement of temperature dependent thermal conductivity and viscosity of TiO2/water nanofluids,” Thermal Fluid Science, Vol. 33, pp.706-714, 2009.
[14]Beck, M.P., Yuan, Y., Warrier, P., Teja, A. S., “The thermal conductivity of alumina nanofluids in water, ethylene glycol, and ethylene glycol + water mixtures,” Journal of Nanoparticle Research, Vol. 12, pp.1469–1477, 2010.
[15]Fotukian, S. M., Esfahany, M. N. “Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube,” International Communications in Heat Mass Trans, Vol. 37, pp.214-219, 2010.
[16]Ho, C. J., Chen, W. C., “An experimental study on thermal performance of Al2O3/water nanofluid in a minichannel heat sink,” Applied Thermal Engineering, Vol.50, pp.516-522, 2013.
[17]Maiga, S.E.B., Nguyen, C. T., Galanis, N., Roy, G., “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices and Microstructures, Vol. 35, pp.543–557, 2004.
[18]Santra, A. K., Sen, S., Chakraborty, Chakraborty, N., “Study of heat transfer due to laminar flow of copper-water nanofluid through two isothermally heated parallel plates,” International Journal of Thermal Sciences, Vol. 48, pp. 391-400, 2009.
[19]Yang, Y. T., Lai, F. H., “Numerical investigation of cooling performance with the use of Al2O3/water nanofluids in a radial flow system,” International Journal of Thermal Sciences, Vol.50, pp.61-72, 2011.
[20]Gherasim, I., Roy, G., Nguyen, C.T., Vo-Ngoc, D., “Experimental investigation of nanofluids in confined laminar radial flows,” International Journal of Thermal Sciences, Vol. 48, pp.1486–1493, 2009.
[21]Ijam, A., Saidur, R., Ganesan, P., “Cooling of minichannel heat sink using nanofluids,” International Communications in Heat and Mass Transfer, Vol. 39, pp.1188-1194, 2012.
[22]Akbari, M., Galanis, N., Behzadmehr, A., “Comparative analysis of single and two-phase models for CFD studies of nanofluid heat transfer,” International Journal of Thermal Sciences, Vol.50, pp.1343-1354, 2011.
[23]Kalteh, M., Abbassi, A., Avval, M.S., Frijns, A., Darhuber, A. “Experimental and numerical investigation of nanofluid forced convection inside a wide microchannel heat sink,” Applied Thermal Engineering, Vol. 36, pp.260-268, 2012.
[24]Moraveji, K. M. , Ardehali, R. M., “CFD modeling (comparing single and two-phase approaches) on thermal performance of Al2O3/water nanofluid in mini-channel heat sink,” International Communications in Heat and Mass Transfer, Vol. 44, pp.157-164, 2013.
[25]Brinkman, H.C., “The viscosity of concentrated suspensions and solutions,” J. Chem. Phys, Vol.20, pp.571-581, 1952.
[26]Einstein, A., “Investigation on the theory of Brownian movement,” Dover, New York, 1956.
[27]Graham, A. L., “On the viscosity of suspensions of solid spheres,” Applied Scientific Research, Vol. 37, pp.275–286, 1981.
[28]Nguyen, C. T., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., Angue Mintsa, H., “Temperature and particle-size dependent viscosity data for water-based nanofluids-hysteresis phenomenon,” International Journal of Heat and Fluid Flow, Vol. 28, pp.1492–1506, 2007.
[29]Dogruoz, M. B., Urdaneta, M., Ortega, A., “Experiments and modeling of the hydraulic resistance and heat transfer of in-line square pin fin heat sinks with top by-pass flow,” International Journal of Heat and Mass Transfer, Vol. 48, pp.5058-5071, 2005.
[30]Jeng, T. M., “A porous model for the square pin-fin heat sink situated in a rectangular channel with laminar side-bypass flow”, International Journal Heat and Mass Transfer, Vol.51, pp.2214-2226, 2008.
[31]Moon, M.A., Husain, A., Kim, K.Y., “Multi-objective optimization of a rotating cooling channel with staggered pin-fins for heat transfer augmentation,” International Journal for Numerical Methods in Fluids, Vol. 68, pp.922-938, 2012.
[32]Wang, X. D., An. B., Xu, J. L., “Optimal geometric structure for nanofluid-cooled microchannel heat sink under various constraint conditions,” Energy Conversion and Management, Vol. 65, pp.528-538, 2013.
[33]Yang, Y. T., Wang, Y. H, Chen, K. W., “Numerical optimization of gas diffusion layer with a wavy channel,” International Communications in Heat and Mass Transfer, Vol.52, pp.15-25, 2014.
[34]Phillips, R.J., Microchannel Heat Sinks, PhD thesis, Massachusetts Institute of Technology, 1987.
[35]Chein, R., Chen, J., “Numerical study of the inlet/outlet arrangement effect on microchannel heat sink performance,” International Journal of Thermal Sciences, Vol.48, pp.1627-1638, 2009.
[36]Vincenzo, B., “Enhancement of heat transfer and entropy generation analysis of nanofluids turbulent convection flow in square section tubes,” Nanoscale Research Letters, Vol. 6, pp. 252-264, 2011.
[37]Ishii, M., Mishima, K., “Two-fluid dynamic theory of two-phase flow,” Paris: Eyrolles, 1975.
[38]Manninen, M., Taivassalo, V., Kallio, S., “On the mixture model for multiphase flow,” VTT Publications 288. Technical Research Center of Finland., 1996.
[39]Schiller, L., Naumann, A., “A drag coefficient correlation,” Z. Ver. Deutsch. Ing., Vol.77, pp.318-320, 1935.
[40]Miller, A., Gidaspow, D., “Dense, vertical gas-solid flow in a pipe,” AIChE J., Vol.38, pp. 1801-1815, 1992.
[41]Patankar, S.V., Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, 1980.
[42]Holland, J., “Genetic algorithms and the optimal allocations of trials,” SIAM Journal of Computing, Vol.2, no.2, pp.88-105, 1973.