| 研究生: |
林宏遠 Lin, Hong-Yuan |
|---|---|
| 論文名稱: |
探索多鐵性鐵酸鉍薄膜中幾何誘發的拓樸鐵電域結構 Exploring Geometry-induced Topological Ferroelectric Domain Structures in Multiferroic BiFeO3 Films |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 108 |
| 中文關鍵詞: | 鐵酸鉍 BiFeO3(BFO) 、鈦酸鍶 SrTiO3(STO) 、濕式蝕刻技術(Wet Etching Technique) 、獨立式自支撐技術(Freestanding Technique) 、幾何應變(Geometry Strain) 、應變梯度(Strain Gradient) 、壓電力顯微鏡 III (Piezoresponse Force Microscopy,PFM) 、奇異極性拓樸結構(Exotic Polar Topological Structure) 、中心型極性渦漩(Center Type Polar Vortex) |
| 外文關鍵詞: | BiFeO3(BFO), SrTiO3(STO), Wet Etching Technique, Freestanding Technique, Geometry Strain, Strain Gradient, Piezoresponse Force Microscopy,PFM, Exotic Polar Topological Structure, Center Type Polar Vortex |
| 相關次數: | 點閱:84 下載:15 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
奇異的極性拓樸結構已在鐵電氧化物薄膜和異質結構中被研究發現,然而,如何多元誘導生成鐵電極性拓樸電疇域仍是一大議題,本研究主要探討給予鐵電材料應變條件看是否能夠誘發出奇異的極性渦漩拓樸鐵電疇域。值得注意的是,極性渦漩拓樸鐵電具有拓樸保護特性,可以透過計算拓樸數這一項指標參數得知,並且鐵電材料還具備記憶特性,意味著可以通過外加電場搭配上幾何應變的調控,創造出奇異的極性拓樸渦漩結構,在非揮發性的記憶體等元件上具有相當大之應用價值,然而,我們是利用了磊晶以及蝕刻還有獨立式自支撐的方式做到幾何應變調控,進而去控制鐵電材料的鐵電疇域。而透過蝕刻達到幾何應變調控來操縱鐵電材料特性的優勢在於,以往是單純透過基板與鐵電材料之間的晶格大小差異,有限度的造成應變效果,而在此透過蝕刻的方式,卻能以不同的需求而造成不同的幾何應變調控,在製程上有一定程度的方便性。
本實驗分為兩類,第一類是透過磊晶與濕式蝕刻做到精準操縱幾何結構大小,在磊晶生長在(001)取向的鈦酸鍶(STO)基板上的鑭鍶錳氧(LSMO)薄膜上建構出人工孔洞(Artificial Pinhole) ,隨後我們再次磊晶覆蓋了鐵酸鉍(BFO)薄膜其中蝕刻的形狀分別有圓形,方形以及菱形,其大小約為數微米到幾百奈米,並且進一步去研究這些在被規範的應變圖案下的人工域的特性。而第二類則是獨立式自支撐轉移技術,想透過因YBCO與BFO之間的表面晶格常數差異,在蝕刻過程造成天然的奈米島而形成極性渦漩,並朝向透過控制蝕刻YBCO的程度操縱奈米島大小,便能夠配合蝕刻技術以更靈活的手法去探究極性渦漩結構。而在實驗上主要是透過壓電力顯微鏡(Piezoresponse Force Microscopy,PFM)技術搭配表面電位顯微鏡(Kelvin Probe Force Microscopy,KPFM)以及導電力顯微鏡(Conductive Atomic Force Microscopy,CAFM),來探測鐵電疇域的結構,結果顯示在BFO/LSMO/STO(001)系統在室溫下BFO薄膜受到幾何應變的調控後,當蝕刻尺寸縮小至幾百nm時,便會出現極性渦漩拓樸結構,這是因為蝕刻造就基板給於雙平面的應變梯度而造成彎電效應以及氧化物薄膜與底電極之間的蕭特基接觸造成的內建電場,使得上下層有電位差形成類似平行電容版的結構,最終形成極性拓樸渦漩結構,並最終透過電控實行操縱卷繞數。
Ferroelectric materials with controllable spontaneous polarization and strong correlated order parameters provide great potential for designing nonvolatile memory devices. To produce novel topological polar structures, the ferroelectric ordering can be tailored through strain induced by substrate vicinality. In our study, we designed two material systems.The first system consists of two samples, both using Pulsed Laser Deposition (PLD) and Wet Etching techniques to create artificial pinholes on La0.7Sr0.3MnO3 (LSMO) thin films epitaxially grown on (001)-oriented SrTiO3 (STO) substrates. Subsequently, we covered these pinholes with BiFeO3 (BFO) thin films, with etching shapes including circles, triangles, and squares. The first sample has sizes of approximately 4-6 micrometers, while the second sample ranges from around 1 micrometer to several hundred nanometers. We further employed Piezoresponse Force Microscopy (PFM), Kelvin Probe Force Microscopy (KPFM), and Conductive Atomic Force Microscopy (C-AFM) techniques to investigate the artificial domain characteristics under defined strain patterns. Our results showed that the polarization variants point along the (110)-axis and form a flux-closure domain structure, with the strain tending to result in non-leakage characteristics. We successfully demonstrated a method to control topological ferroelectric domains and enhance piezoelectric properties through epitaxial growth.The second system involves using Pulsed Laser Deposition (PLD) with a freestanding (FS) method to create heterostructure thin films from three different target materials: BFO, STO, and YBCO. The YBCO layer is etched away to obtain FS-BFO/STO bilayer epitaxial films, which are then transferred to a target substrate via the FS method. Due to the lattice constant differences on the YBCO surface, BFO forms island structures. We further employed Piezoresponse Force Microscopy (PFM) techniques to study the artificial domain characteristics under the BFO island structures. Our results indicated that the strain boundaries provided by the island structures form Head-to-Head centered vortex domain structures in order to minimize elastic energy.
1 W. Eerenstein, N. D. Mathur & J. F. Scott ET et al., Multiferroic and magnetoelectric materials. Nature 442, 759-765 (2006).
2. Gao Rong-Zhen, Wang Jing, Wang Jun-Sheng, Huang Hou-Bing et al., Investigation into electrocaloric effect of different types of ferroelectric materials by Landau-Devonshire theory, Acta Phys. Sin, Vol. 69, No. 21 217801 (2020).
3. F. Zavaliche et al., Multiferroic BiFeO3 films: domain structure and polarization dynamics, Phase Transitions, Vol. 79, No. 12, December, 991–1017 (2006).
4. S. K. Streiffer et al, Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J Appl Phys 83, 2742.(1998).
5. L.W. Martin J. Seidel et al, Conduction at domain walls in oxide multiferroics. Nat Mater 8, 229.(2009).
6. C. H. Yang, J. Seidel, S. Y. Kim et al., Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat Mater 8 (6), 485.(2009).
7. N.Balke et al., Deterministic control of ferroelastic switching in multiferroic materials, nature nanotechnology, vol 4 December (2009).
8. Yi-Chun Chen et al., Electrical Control of Multiferroic Orderings in Mixed-Phase BiFeO 3 Films, Adv. Mater., 24, 3070–3075 (2012).
9. Chan-Ho Yang et al., Configurable topological textures in strain graded ferroelectric nanoplates, nature communications, 9:403 (2018).
10. Jinxing Zhang & Ce-Wen Nan et al., Controllable conductive readout in self-assembled, topologically confinedferroelectric domain walls, nature nanotechnology, vol 13 October 947-952 (2018).
11. Ren-Ci Peng, Long-Qing Chen, Ce-Wen Nan et al., Understanding and predicting geometrical constraint ferroelectric charged domain walls in a BiFeO3 island via phase-field simulations, applied physics letters 113, 222902 (2018).
12. Sang Don Bu et al., Flexoelectric Effect in the Reversal of Self-Polarization and
Associated Changes in the Electronic Functional Properties of BiFeO 3 Thin Films, Adv. Mater., 25, 5643-5649 (2013).
13. P.Yu et al., Interface control of bulk ferroelectric polarization, PNAS, 9710-9715 June 19 vol. 109 no. 25 (2012)
14. G. F. Nataf et al., Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials, nature reviews physics, 634-648 (2020)
15. Nina Balke & Sergei V. Kalinin et al., Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3, nature physics, vol 8 January (2012).
16. Houbing Huang & Ce-Wen Nan et al., Polar Solomon rings in ferroelectric nanocrystals, nature communications, 14:2941 (2023).
17. R. Wiesendanger, H.-J. Güntherodt, and W. Baumeister et al., Scanning Tunneling Microscopy II: Further Applications and Related Scanning Techniques (Springer, 1992).
18. 劉懿德, “複雜性氧化物的暫態與非揮發光控特性與機制”, 成功大學, 博士論文(2021).
19. D. Seol et al., Non-piezoelectric effects in piezoresponse force microscopy, Current Applied Physics, 17 661-674 (2017).
20. https://www.parksystems.com/index.php/park-spm-modes/93-dielectric-piezoelectric/230-piezoelectric-force-microscopy-pfm
21. 簡赫伸, “以進階壓電力顯微技術結合機器學習探究鋯酸鉛薄膜的反鐵電性”, 成功大學, 碩士論文 (2023)
22. https://www.parksystems.com/en/products/research-afm/AFM-modes/Electrical-Modes/conductive-afm--c-afm-
23. https://www.fingqi.com/pDetail?product_id=998&_l=zh_CN
24. https://www.mks.com/n/etch-overview
25. Chang et al., A Fast Route Towards Freestanding Single-Crystalline Oxide Thin Films by Using YBa2Cu3O7-x as a Sacrificial Layer, Nanoscale Research Letters, 15:172 (2020).