| 研究生: |
李建緯 Li, Jian-Wei |
|---|---|
| 論文名稱: |
以多目標粒子群最佳化演算法探勘分類法則 Classification rule discovery using multi-objective particle swarm optimizer |
| 指導教授: |
李昇暾
Li, Sheng-Tun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系 Department of Industrial and Information Management |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 多目標 、粒子群最佳化演算法 、資料探勘 、分類 |
| 外文關鍵詞: | classification, multi-objective, particle swarm optimizer, data mining |
| 相關次數: | 點閱:83 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
資料探勘可以從大量的資料中,挖掘出不易發現且有用的知識,協助決策者做出有效的決策,其中分類是資料探勘技術中重要的一環,分類是指根據已知資料的屬性建立分類模型,決策者利用此分類模型去預測新資料的類別,因為決策者不會盲目的相信自己沒有辦法理解的知識,所以分類模型不只要有高預測準確率,還必須同時具備高理解性,然而這兩個目標往往是彼此衝突的,沒有辦法找出同時滿足所有目標的單一最佳解,所以本研究希望找出多個目標之間的折衷最佳解集合。
近來粒子群最佳化演算法(Particle Swarm Optimizer, PSO)已經被成功地應用在解決單目標最佳化問題,且可以在很短的時間內得到非常不錯的結果,多目標粒子群最佳化演算法(Multi-Objective Particle Swarm Optimizer, MOPSO)就是其用來處理多目標問題的擴充模式,本研究將之使用於求解考慮預測準確率以及理解性兩目標的分類法則探勘問題,透過此演算法可獲得一非劣解(Non-Inferior Solution)集合,此一解集合可幫助決策者能於短時間內從龐大的可行解集合中挑選出最理想的分類模型。
Data mining can discover hidden and useful knowledge which can help decision makers to make a well-informed decision from large database. Classification is an important task for data mining. In classification, a model is built to assign a class to each instance in the dataset. Because decision makers could not blindly trust the incomprehensible output of the model, the classification model should not be only accurate but also comprehensible. However, accuracy and comprehensibility of classification model often conflict with each other. It is difficult to find out a solution to satisfy all the objectives. Therefore, this paper tries to find out a Pareto solution set.
Recently, the success of the Particle Swarm Optimization (PSO) algorithm as a single-objective optimizer has motivated researchers to extend the use of this bio-inspired technique to other areas. One of them is Multi-Objective Particle Swarm Optimizer (MOPSO). This paper uses MOPSO to evolve several classification models each having different prediction accuracy and comprehensibility. These models can make decision makers to easily choose the ideal decision alternatives.
Boyd, R. and Richerson, P. J., “Culture and the Evolutionary Process”, Chicago: The University of Chicago Press, 1985.
Cervantes, A., Galvan, I. and Isasi, P., “A Comparison between the Pittsburgh and Michigan Approaches for the Binary PSO Algorithm”, Proceedings of the 2005 IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK, Vol. 1, pp. 290-297, 2005.
Chen, M.S., Han, J., and Yu, P.S., “Data mining: an overview from a database perspective”, IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 6, pp. 866-883, 1996.
Clerc, M., “The swarm and the queen: towards a deterministic and adaptive particle swarm optimization”, Proceedings of the IEEE Congress on Evolutionary Compution, Washington, DC, pp. 1951-1957, 1999.
Coello, C. A., Pulido, G. T. and Lechuga, M. S., “Handling Multiple Objectives With Particle Swarm Optimization”, IEEE Transactions on Evolutionary Computation, Vol. 8, No. 3, pp. 256-279, 2004.
Deb, K., and Goldberg, D. E., “An investigation of niche and species formation in genetic function optimization”, Proceedings of the Third International Conference on Genetic Algorithms, pp. 42–50, San Mateo, California, George Mason University, Morgan Kaufmann Publishers, 1989.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm: NSGA–II”, IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, pp. 182–197, 2002.
Dehuri, S. and Mall, R., “Predictive and comprehensible rule discovery using a multi-objective genetic algorithm”, Knowledge-Based Systems, Vol. 19, Issue 6, pp. 413-421, 2006.
Eberhart, R.C. and Shi, Y., “Particle Swarm Optimization: Developments, Application and Resources”, Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, South Korea, Vol. 1, pp. 81-86, 2001.
Esmin, A.A.A., Aoki, A.R. and Lambert-Torres, G.., “Particle Swarm Optimization For Fuzzy Membership Functions Optimization”, IEEE International Conference, Vol. 3, 2002.
Fayyad, U.M., Piatetsky-Shapiro, G., and Smyth, P., “From Data Mining to Knowledge Discovery: an Overview”, Advances in Knowledge Discovery and Data Mining, AAAI/MIT, Cambridge, pp.1-34, 1996.
Freitas, A., “A survey of evolutionary algorithms for data mining and knowledge discovery”, In: Ghosh A, Tsutsui S, editors. Advances in evolutionary computation. Berlin: Springer, 2002.
Holland, J.H., “Escaping brittleness”, In R.S. Michalski, J.G. Carbonell & T.M. Mitchell (Eds) Machine Learning: An Artificial Intelligence Approach , Vol. 2, San Mateo, CA: Morgan Kaufmann, 1986.
Hu, X., Eberhart, R.C. and Shi, Y., “Swarm intelligence for permutation optimization: a case study of n-queens problem”, Swarm Intelligence Symposium, The Proceedings of the 2003 on IEEE (SIS '03), pp. 243-246, 2003.
Hu, X., Shi, Y., and Eberhart, R.C., “Recent advances in particle swarm”, Proceedings of IEEE Congress on Evolutionary Computation 2004 (CEC 2004), pp. 90-97, 2004.
Iglesia, D. L. B., Philpott, M.S., Bagnall, A.J., Rayward-Smith, V.J., “Data mining rules using multi-objective evolutionary algorithms”, Evolutionary Computation, Vol. 3, pp. 1552-1559, 2003.
Janikow, C.Z., “A knowledge intensive genetic algorithm for supervised learning”, Machine Learning, Vol. 13, No. 2-3, pp. 189-228, 1993.
Kennedy, J., and Eberhart, R.C., “Particle swarm optimization”, Proceedings of the IEEE International Confcrcnce on Neural Networks, Perth, Australia, Vol. 4, pp. 1942-1948, 1995.
Kennedy, J. and Spears, W., “Matching algorithms to problems: an experimental test of the particle swarm and some genetic algorithms on the multimodal problem generator”, In IEEE World Congress on Computational Intelligence, pp. 74–77, 1998.
Li, X., “A Non-dominated Sorting Particle Swarm Optimizer for Multi-objective Optimization,” in Proc. Genetic and Evolutionary Computation: GECCO 2003, Vol. 2723, pp. 37-48, 2003.
Michie, D., Spiegelhalter, D.J. and Taylor, C.C., “Machine Learning, Neural and Statistical Classification”, NY: Ellis Horwood, 1994.
Moore, J. and Chapman, R., “Application of particle swarm to multiobjective optimization” Department of Computer Science and Software Engineering, Auburn University, 1999.
Murthy, S. and Aha, D., “UCI Repository of Machine Learning Data Tables”, Available: http://www.ics.uci.edu/~mlearn/, 1996.
Parpinelli, R.S., Lopes, H.S. and Freitas, A.A., “Data mining with an ant colony optimization algorithm”, IEEE Transactions on Evolutionary Computation, Volume 6, Issue 4, pp. 321-332, 2002.
Parsopoulos, K. E. and Vrahatis, M. N., “Particle Swarm Optimization Method in Multi-objective Problems,” in Proc. 2002 ACM Symp. Applied Computing (SAS’2002), pp. 603-607, 2002.
Reyes-Sierra, M. and Coello, C. A., “Multi-Objective Particle Swarm Optimizers:A Survey of the State-of-the-Art”, International Journal of Computational Intelligence Research, Vol.2, No.3, pp. 287–308, 2006.
Salerno, J., “Using the particle swarm optimization technique to train a recurrent neural model”, In Proceedings of the Ninth IEEE International Conference on Tools with Artificial Intelligence, pp. 45-49, 1997.
Shi, Y. and Eberhart, R.C., “Parameter selection in particle swarm optimization”, Proceedings of 7th Annual Conference on Evolutionary Programming, pp. 591-601, 1998a.
Shi, Y. and Eberhart, R.C., “A modified particle swarm optimizer”, Proceedings of the IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, pp. 69-73, 1998b.
Smith, S.F., “A learning system based on genetic algorithms”, University of Pittsburg, Doctoral dissertation, 1980.
Sousa, T.F., Silva, A.P. and Silva, A.F., “Particle swarm based data mining algorithms for classification tasks”, Parallel Computing, Vol. 30, No. 5-6, pp. 767-783, 2004.
Tan, K.C., Yu, Q., Heng, C.M. and Lee, T.H., “Evolutionary computing for knowledge discovery in medical diagnosis”, Artificial Intelligence in Medicine, Vol. 27, No. 2, pp. 129-154, 2003.
Tan, K.C., Yu, Q., and Ang, J.H., “A Dual-Objective Evolutionary Algorithm for Rules Extraction in Data Mining”, Computational Optimization and Applications, Vol. 34, No. 2, pp. 273-294, 2006.
Wang, C.H., Hong, T.P. and Tseng, S.S., “A hybrid genetic knowledge-integration strategy”, Proceedings of the 1998 International Conference on Evolutionary Computation (ICEC’98), Anchorage, AK, pp. 587-591, 1998.
Wang, K.P., Huang, L., Zhou, C.G.. and Pang, W., “Particle Swarm Optimization for Traveling Salesman Problem”, in Proceedings of the Second International Conference on Machine Learning and Cybernetics, vol. 3, pp. 1583-1585, 2003.
Wong, M.L. and Leung, K.S., “Data Mining Using Grammar Based Genetic Programming and Applications”, Kluwer Academic Publishers: London, 2000.
許志義。多目標決策。台北市:五南。(民83)