| 研究生: |
林建宏 Lin, Chien-Hung |
|---|---|
| 論文名稱: |
大氣懸浮微粒濃度及化學組成與氣象因子變異關聯性研究 Variation of the relationship between chemical composition of airborne particle and meteorological parameters |
| 指導教授: |
蔡俊鴻
Tsai, Jiun-Horng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 177 |
| 中文關鍵詞: | 前驅氣體 、水溶性離子 、事件日 、硫轉化率 、氮轉化率 |
| 外文關鍵詞: | water soluble ion, sulfur conversion ratio, nitrogen conversion ratio, epidsode day, precusor gas |
| 相關次數: | 點閱:143 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對探討大氣懸浮微粒及其水溶性離子成份濃度變化與氣象因子(溫度、相對濕度及風速)之關聯性。研究工作於大寮空氣品質監測站以MOUDI/Nano-MOUDI及ADS(Annular Denuder System)分別採集大氣懸浮微粒及前驅氣體樣品,配合離子層析儀(IC)分析微粒所含水溶性離子成份濃度及前驅氣體濃度。現場採樣分別於微粒污染事件日(大寮空品測站PM10>125 μg/m3)及非事件日期間,採樣週期為12小時,採樣時段區分為日間(08:00~20:00)及夜間(20:00~翌日08:00),整體研究共計樣品38組,包括:事件日15組;非事件日23組。
研究結果顯示,於懸浮微粒事件日與非事件日期間之大氣微粒粒徑分佈皆呈現三峰分佈型態,分別界於1.8~3.2 μm、0.18~1.8 μm及0.018~0.056 μm粒徑範圍,事件日期間與非事件日期間懸浮微粒質量濃度差異主要出現於0.1~1.8 μm粒徑範圍(PM0.1-1.8),事件日微粒與非事件日微粒濃度比值為3.7倍,於1.8~3.2 μm及0.018~0.056 μm之濃度比值分別為4.2倍及1.8倍。
探討微粒濃度差異與氣象因子關聯性顯示,事件日PM0.1~1.8微粒濃度大氣隨相對濕度增加而增高(r=0.68),非事件日PM0.1-1.8微粒濃度則隨溫度增加而減少(r=0.70);多因子變異數分析(Multi-Way ANOVA)結果,PM0.1-1.8微粒濃度受到大氣溫度及相對濕度影響較明顯。以風向分佈分析結果顯示,微粒事件日期間風向(西南風)與其季節性(10月至翌年3月)盛行風向(西北風)不同,顯示大寮監測站微粒事件日期間由於風向改變致使上風處排放源傳輸影響現象十分顯著。
分析大氣微粒水溶性離子成份結果顯示,事件日與非事件期間大氣微粒主要水溶性離子(NH4+、NO3-、SO42-)濃度於PM0.1-1.8範圍之差異最大;事件日期間PM0.1-1.8微粒之NH4+及NO3-濃度隨相對濕度增加而增高;多因子變異數分析結果,顯示大氣微粒NO3-及NH4+含量明顯受溫度及相對濕度影響。
解析五種前驅氣體(HCl、HNO2、HNO3、SO2、NH3)濃度變化關聯性結果顯示,HNO3與HCl濃度於事件日-日間具正相關性(r=0.66);HNO2與NO2濃度、[HNO2+HNO3]與NO2濃度於事件日-夜間及非事件日-夜間時呈現正相關性;HNO2與NO濃度於事件日-夜間未具顯著相關性,於非事件日-夜間期間則具高度相關性(r=0.93),[HNO2+HNO3]與NO2濃度相關係數於事件日-夜間期間為0.49,於非事件日-夜間期間為0.90。研究數據顯示,事件日及非事件日期間HCl、HNO3及SO2濃度變化皆呈現日間高於夜間之趨勢,HNO2及NH3濃度皆呈現日間高於低夜間之趨勢。
研究顯示,於大寮監測站之衍生性氣膠(SO42-及NO3-)細粒徑波峰分佈主要界於0.18~1.8 μm;於前驅氣體(SO2及NO2)此粒徑範圍之氣固相轉化率計算結果顯示,事件日期間之氮轉化率及硫轉化率較高,證實轉化反應造成細粒徑NO3-及SO42-微粒濃度上升,並為導致微粒污染事件發生之重要原因。
The research investigated the relationship between the concentrations of airborne particulate matter and water-soluble ionic species and meteorological parameters (temperature, relative humidity, wind velocity). The airborne particulate matter and their precursor gases were sampled by MOUDI/ Nano-MOUDI and ADS (Annular Denuder System) at the Da-Liao ambient air quality monitoring station. The content of water-soluble ion species and precursor gases were detected by ion chromatography. All samples were categoried as non-episode or episode events, There were totally 38 samples (15 episode days and 23 non-episode days) in this study. All samples had been grouped into daytime (08:00-20:00) and nighttime (20:00-08:00) cycle, yielding 12-h average concentration.
Aerosol mass size distributions showed a tri-model during the episode day and non-episode day with the peak occurred at 1.8~3.2, 0.18~1.8 and 0.018~0.056 μm, respectively. The mass aerosol with diameter 0.18-1.8 μm during episode day was 3.7 times higher than that in non-episode day.
This research investigated the diverse relationships between the PM0.1-1.8 mass concentration and meteorological parameters during episode day and non-episode day, and it showed PM0.1-1.8 mass during episode day was elevated as relative humidity increasing (r=0.68); PM0.1-1.8 mass during non-episode day was reduced as temperature increasing (r=0.70). Multi-way Analyses of variance (ANOVA) results showed that the PM0.1-1.8 mass was influenced by temperature and relative humidity. Moreover, wind rose charts showed that the prevailing wind direction (southwester) during episode day (from Oct. to Mar. next year) was different from the direction of monsoon (northwester). The change of wind direction potentially during episode day may attribute to the topographic factors in Da-Liao area.
During episode day and non-episode day, the dominant particular components were NH4+, SO42-, and NO3-. The concentration of the water-soluble ion showed a pronounced difference in PM0.1-1.8 during episode day, it increased by 13.8 (NO3-), 4.1 (SO42-) and 6.1 (NH4+) times than those of non-episode day. The concentrations of particular NH4+ and NO3- in PM0.1-1.8 increased with increasing relative humidity; the ANOVA results also evidence this observation.
For five aerosol precursor gases (HCl, HNO2, HNO3, SO2, and NH3), the concentration results a ppositive correlation (r=0.66) between HNO3 and HCl concentrations was positive correlation during episode daytime. The [HNO2+HNO3] and NO2 also showed a positive correlation during episode and non-episode nighttimes, the results were 0.49 and 0.90, repectively. The observation indicated that the mass concentration of HCl, HNO3 and SO2 were higher during daytime than those of in nighttime. In contrast, the HNO2 and NH3 showed an inverse result, i.e., low concentration appeared in daytime than nighttime.
The mass-size distribution of NO3- and SO42- were founded dominantly in the accumulation mode (0.18-1.8 μm). The gas-to-particle conversion ratio of NO2 and SO2 were high during episode day; it evidanced that high conversion ratio may caused particle nitrate and sulfate formating and increased mass concentration in fine paticles; this may contribute to the particle pollution occurrance.
Altshuller, A.P. (1982). Atmospheric concentrations and distributions of chemical substances. In the acidic deposition phenomenon and it’s effects, US environmental protection agency, Washington, DC.
APEG, 1999. Source apportionment of airborne particulate matter in the United Kingdom. Airborne Particulates Expert Group.
Appel B.R., Tokiwa, Y., Holrer, E.M., Kothny, E.L., Haik, M., Wesolowski, J.J. (1980). Evaluation and development of procedures for determination of sulfuric acid, total particle-phase acidity and nitric acid in ambient air- Phase 11. California Air Resourse Board A8-Ill-31 final report.
Ayers, G.P., Keywood, M.D., Gras, J.L., 1999. TEOM vs. manual gravimetricmethods for determination of PM2.5 aerosol mass concentrations. Atmospheric Environment 33: 3717–3721.
Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L. (2003). Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environment 37: 2825-2835.
Brook, J.R., Dann, T.F., Burnett, R.T. (1997). The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. Journal of the Air and Waste Management Association 47: 2-19.
Cabada, J.C., Rees, S., Takahama, S., Khlystov, A., Pandis, S.N., Davidson, C.I., Robinson, A.L. (2004). Mass size distributions and size resolved chemical composition of fine particulate matter at the Pittsburgh supersite. Atmospheric Environment 38: 3127-3141.
Calvert, J.G., Stockwell, W.R. (1983). Acid generation in the troposphere by gas-phase chemistry. Environmental Science and Technology 17: 428-443.
Calvert, J.G., Su, F., Bottenheim, J.W., Strausz, O.P. (1978). Mechanism of the homogenous oxidation of sulfur dioxide in the troposphere. Atmospheric Environment 12: 197-226.
Chang. L.P., Tsai, J.H., Chang, K.L., Lin, J.J. (2008). Water-soluble inorganic ions in airborne particulates from the nano to coarse mode: a case study of aerosol episodes in southern region of Taiwan. Environmental Geochemistry and Health 30: 291-303.
Charron, A., Harrison, R.M., Moorcroft, S., Booker, J., 2003.Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments, Atmospheric Environment. Atmospheric Environment 38, 415-423.
Chen, M.L., Chen, L.T., Wang, Y.N., Yang, S.F., Chen, H.C., Mao, I.F. (2003). Characteristics of acid aerosols in the geothermal area of metropolitan Taipei, Taiwan. Atmospheric Environment 37: 2061-2067.
Chen, S.J., Hsieh, L.T., Tsai, C.C., Fang, G.C. (2003). Characterization of atmospheric PM10 and related chemical species in southern Taiwan during the episode days. Chemosphere 53: 29-41.
Chung A., Herner J.D. and Kleeman M.J.(2001). “Detection of alkaline ultrafine atmospheric particles at Bakerefield, California,” Environmental Science &Technology, 35, 2184-2190.
Colbeck, I., Harrison, R.M. (1984). Ozone-secondary aerosol-visibility relationships in North-West England. Science of the Total Environment 34: 87-100.
Danalatos, D., Glavas, P. (1999). Gas phase nitric acid, ammonias and related particulate matter at a Mediterranean coastal site, Patra, Greece. Atmospheric Environment 33: 3417-3425.
Duvall, R.M., Majestic, B.J., Shafer, M.M., Chuang, P.Y., Simoneit, B.R. T., Schauer, J.J. (2008). The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmospheric Environment, in press.
Eldering, A., Solomon, P.A., Salmon, L.G., Fall, T., Cass, G.R. (1991). Hydrochloric acid-a regional perspective on concentrations and formation in the atmosphere of southern California. Atmospheric Environment 25A: 2091-2102.
Eleftheriadis, K., Balis, D., Ziomas, I.C., Colbeck, I., Manalis, N. (1998). Atmospheric aerosol and gaseous species in Athens, Greece. Atmospheric Environment 32: 2183-2191.
EPA, 2003a. Lastest Findings on National Air Quality: 2002 Status and Trends Report. US EPA.
EPA, 2003b. National Air Quality and Emissions Trends Report. 2003, US EPA.
Fitzgerald J. W. (1991) Marine aerosols: a review. Atmospheric Environment 25A: 533-545.
Foltescu, V.L., Lindgren, E.S., Isakson J., M., Oblad, M. (1996). Gas-to-particle conversion of sulphur and nitrogen compounds as studied at marine stations in Northern Europe. Atmospheric Environment 30: 3129-3140.
Forrest, J., Tanner, R.L., Spandau, D., D_Ottavio, T., Newman, L. (1980). Determination of total inorganic nitrate utilizing collection of nitric acid on NaCl-impregnated filters. Atmospheric Environment 14: 137-144.
Fosco, T., Schmeling, M. (2006). Aerosol ion concentration dependence on atmospheric conditions in Chicago. Atmospheric Environment 40: 6638-6649.
Freiberg, J. (1974). Effects of relative humidity and temperature on iron-catalyzed oxidation of SO2, in atmospheric aerosols. Environmental Science and Technology 8: 731-734.
Grosjean, D., Friedlander, S.K.(1975). Gas-particle distribution factors for organic and other pollutants in the Los Angeles atmosphere. Journal of the Air Pollution Control Association 25: 1038-1044.
Gupta, A., Kumar, R., Kumari, K.M., Srivastava, S.S. (2003).Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Environment 37: 4837-4846.
Harrison, R.M., Deacon, A.R., Jones, M.R., Appleby, R.S. (1997). Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.) Atmospheric Environment 31: 4103-4117.
Harrison, R.M., Peak, J.D., Collins, G.M. (1996). Trophospheric cycles of nitrous acid. Journal of Geophysical Research 101: 14429-14439.
Harrison, R.M.; Perry, R. (1986) Handbook of Air Pollution Analysis, seconded. Chapman and Hall, London, New York.
Hassan, S.K.M. (2000). A study on indoor air quality in greater Cairo. M.Sc. Thesis, Cairo University, Egypt.
Hazi, Y., Heikkinen, M.S.A., Cohen, B.S. (2003). Size distribution of acidic sulfate ions in fine ambient particulate matter and assessment of source region effect. Atmospheric Environment 37: 5403-5413.
He, K.B. , Yang, F.M., Ma, Y.L., Zhang, Q., Yao, X.H., Chan, C.K., Steven, C., Chan, T., Patricia, M. (2001). The characteristics of PM2.5 in Beijing, China. Atmospheric Environment 35: 4959-4970.
Heintzenberg, J. (1989). Tellus 41B: 149-160.
Hering, S.V., Friedlander, S.K. (1982). Origins of aerosol sulfur size distributions in the Los Angeles basin. Atmospheric Environment 16: 2647-2656.
Hu, M., He, L.Y., Zhang, Y.H., Wang, M., Kim, Y.P., Moon, K.C. (2002). Seasonal variation of ionic species in fine particles at Qingdao, China. Atmospheric Environment 36: 5853-5859.
John, W., Wall, S. M., Ondo, J. L., Winklmayr, W. (1990). Atmospheric Environment 24: 2349-2359.
Kadowaki, S. (1976). Size distribution of atmospheric total aerosols, sulfate, ammonium and nitrate particulate in the Nagoya area. Atmospheric Environment 10: 39-43.
Kadowaki, S. (1986). On the nature of atmospheric oxidation processes of SO2 to sulfate and of NO2 to nitrate on the basis of diurnal variations of sulfate, nitrate, and other pollutants in an urban area. Environmental Science and Technology 20: 1249-1253.
Kang, C.M., Lee, H.S., Kang, B.W., Lee, S.K., Sunwoo, Y. (2004). Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmospheric Environment 38: 4749-4760.
Kerminen, V.M. and Wexler, A.S.(1995). “Growth laws for atmospheric aerosol particles: an examination of the bimodality of the accumulation mode,” Atmospheric Environment, 29, 3263-3275.
Kerminen, V.M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., Merilainen, J. (2000). Low-molecular-weight dicarboxylic acids in an urban and rural atmosphere. Journal of Aerosol Science 31: 349-362.
Khoder, M.I. (1997). Assessment of some air pollutants in Cairo and their role in atmospheric photochemistry. Ph.D. Thesis, Ain Shams University, Egypt.
Khoder, M.I. (2002). Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 49: 675-684.
Kleeman, M.J., Schauer, J.J., Cass, G.R. (2000). Size and composition distribution of fine particulate matter emitted from motor vehicles. Environmental Science and Technology 34: 1132-1142.
Lee, H.S., Kang, C.M., Kang, B.W., Kim, H.K. (1999). Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmospheric Environment 33: 3143-3152.
Lin, J.J. (2002a). Characterization of the major chemical species in PM2.5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36: 1911-1920.
Lin, J.J. (2002b). Characterization of water-soluble ion species in urban ambient particles. Environment International 28: 55-61.
Lin, Y.C., Cheng, M.T. (2007). Evaluation of formation rates of NO2 to gaseous and particulate nitrate in the urban atmosphere. Atmospheric Environment 41: 1903-1910.
Lin, Y.C., Cheng, M.T., Ting, W.Y., Yeh, C.R. (2006). Characteristics of gaseous HNO2, HNO3, NH3 and particulate ammonium nitrate in an urban city of Central Taiwan. Atmospheric Environment 40: 4725-4733.
Liu, L.J. S., Burton, R., Wilson, W.E., Koutrakis, P. (1996). Comparison of aerosol acidity in urban and semirural environments. Atmospheric Environment 30: 1237-1245.
Liu, S., Hu, M., Slanina, S., He, L.Y., Niu, Y.W., Bruegemann, E., Gnauk, T., Herrmann, H. (2008). Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China. Atmospheric Environment, in press.
Margitan, J.J. (1984). Mechanism of the Atmospheric Oxidation of Sulfur Dioxide. Catalysis by Hydroxyl Radicals. Journal of Physical Chemistry 88: 3314-3318.
Mehlmann, A., Warneck, P. (1995). Atmospheric gaseous HNO3, particulate nitrate, and aerosol size distributions of major ionic species at a rural site in western Germany. Atmospheric Environment 29: 2359-2373.
Mentel, T.F., Bleilebens, D., Wahner, A. (1996). A study of nighttime nitrogen oxide oxidation in a large reaction chamber—the fate of NO2, N2O5, HNO3, and O3 at different humidities. Atmospheric Emwonment 30: 4007-4020.
Middleton, P., Kiang, C.S., Mohnen, V.A. (1980). Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment 14: 463-472.
Odum, J.R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R.C., Seinfeld, J.H. (1996). Gas/particle partitioning and secondary organic aerosol yields. Environmental Science and Technology 30: 2580 -2585.
Olszyna, K.J., Bairai, S.T., Tanner, R.L. (2005). Effect of ambient NH3 levels on PM2.5 composition in the Great Smoky Mountains National Park. Atmospheric Environment 39: 4593-4606.
Parmar, R.S., Satsangi, G.S., Kumari, M., Lakhani, A., Srivastava, S.S., Prakash, S. (2001). Study of size distribution of atmospheric aerosol at Agra. Atmospheric Environment 35: 693-702.
Penkett, S.A., Jones, B.M.R., Brice, K.A., Eggleton, A.E.J. (2007). The importance of atmospheric ozone and hydrogen peroxide in oxidising sulphur dioxide in cloud and rainwater. Atmospheric Environment 41: S154-S168.
Philinis, C., Seinfeld, J.H. (1988). Development and evaluation of an eulerian photochemical gas aerosol model. Atmos. Environ. 22: 1985-2001.
Pitts, B.J., Pitts J., J.N., (1986). Atmospheric Chemistry, Fundamentals and Experimental Techniques. Wiley, New York.
Rao, T.N., Collier, SS., Calvert, J.G. (1969). Journal of the Air Pollution Control Association 91: 1609.
Ren, X., Harder, H., Martinez, M., Lesher, R.L., Oliger, A., Shirley, T., Adams, J., Simpas, J.B., Brune, W.H. (2003). HOx concentrations and OH reactivity observations in New York city during PMTACS-NY2001. Atmospheric Environment 37: 3627-3637.
Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G. (2002). Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36: 1661-1674.
Roberts, P.T., Friedlander, S.K. (1976). Photochemical aerosol formation SO2, 1-heptene, and NOx in ambient air. Science of the Total Environment 10: 573-580.
Russell, A.G., Cass, G.R., Seinfeld, J.H. (1986). On some aspects of nighttime atmospheric chemistry. Environmental Science and Technology 20: 1167-1172.
Sakugawa, H. ; Kaplan, I.R. (1989). H2O2 and O3 in the atmosphere of Los Angeles and its vicinity: Factors controlling their formation and their role as oxidants of SO2. Journal of Geophysical Research 94: 12957-12974.
Sakugawa, H., Kaplan, I.R., Tsai, W., Cohen, Y. (1990). Atmospheric hydrogen peroxide: Does it share a role with ozone in degrading air quality. Environmental Science and Technology 24: 1452-1462.
Sakurai, T., Fujita, S.I., Hayami, H., Furuhashi, N. (2003). A case study of high ammonia concentration in the nighttime by means of modeling analysis in the Kanto region of Japan. Atmospheric Environment 37: 4461-4465.
Sander, S.P., Seinfeld, J.H. (1976). Chemical Kinetics of Homogeneous Atmospheric Oxidation of Sulfur Dioxide. Environmental Science and Technology 10: 1114-1123.
Schwartz, S.E., Freiberg, J.E. (2007). Mass-transport limitation to the rate of reaction of gases in liquid droplets: application to oxidation of SO2 in aqueous solutions. Atmospheric Environment 41: S138-S153.
Seinfeld, J.H. (1986). Atmospheric chemistry and physics of air pollution. Wiley-Interscience, New York.
Seinfeld, J.H. (1997). Dynamics of urban and regional atmospheric aerosols. Journal of Aerosol Science 28: S417-S418.
Seinfeld, J.H.; Pandis, S.N. (1998). Atmospheric Chemistry and Physics: From Air Pollution to Global Change. John Wiley & Sons, New York.
Shaw, R.W., Paur, R.J. (1983). Measurement of sulfur in gases and particles during sixteen months in the Ohio River valley. Atmospheric Environment 17: 1431-14 38.
Skov, H., Egelov, A.H., Granby, K. (1997). Relationships between ozone and other photochemical products at LL. Valby, Denmark. Atmospheric Environment 31: 685-691.
Stelson, A.W., Seinfeld, J.H. (1982). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment 16: 983-992.
Stelson, A.W., Seinfeld, J.H. (2007). Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment 41: S126-S135.
Tang, I.N., Munkelwitz, H.R. (1994). Water activities, densities, and refractive indices of aqueous sulfates and sodium nitrate droplets of atmospheric importance. Journal of Geophysical Research 99: 18801-18808.
Tsai, Y.I., Cheng, M.T. (1999). Visibility and aerosol chemical compositions near the coastal area in Central Taiwan. The Science of the Total Environment 231: 37-51.
Tsai, Y.I., Cheng, M.T. (2004). Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54: 1171-1181.
Tsai, Y.I., Kuo, S.C. (2005). PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39: 4827-4839.
Walker, J.T., Whitall, D.R., Robarge, W., Paerl, H.W. (2004). Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment 38: 1235-1246.
Wall, S.M., John, Wa., Ondo, J.L. (1988). Measurement of aerosol size distributions for nitrate and major ionic species Atmospheric Environment 22: 1649-1656.
Whitby, K.T., Cantrell, B. (1976). International Conference on Environmental Sensing and Assessment, Las Vegas, Nev.; United States Atmospheric aerosols-Characteristics and measurement: 1 29-1 to 6 29-1.
Wilson, T.R. (1975). Salinity and the major elements of sea-water. In: Chemical Oceanography (eds. Riley, J.P., Skirrow, G.). Academic Press, San Diego, CA, 365-413.
Wu, H.B., Chan, C.K. (2008). Effects of potassium nitrate on the solid phase transitions of ammonium nitrate particles. Atmospheric Environment 42: 313-322.
Yao, X., Ming, F., Chan, C.K. (2003). The size dependence of chloride depletion in fine and coarse sea-salt particles. Atmospheric Environment 37: 743-751.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, Mulawa, T.P., He, K., Ye, B. (2002). The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmospheric Environment 36: 4223-4234.
Yoshizumi, K., Hoshi, A. (1985). Size Distributions of Ammonium Nitrate and Sodium Nitrate in Atmospheric Aerosols Environmental Science and Technology 19: 258-261.
Zhao, Y., Gao, Y. (2008). Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment 42: 4063-4078.
Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C.S., Zhang, Y., Cass, G.R. (2005). Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment 39: 3967-3976.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S. (1999). Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33: 843-853.
王秋森,「氣膠原理與應用」,IOSH勞工安全衛生技術叢書,第71頁(1995)。
吳義林,賴進興,林清和,「南部地區氣膠組成與分布特性實測計畫」,行政院環境保護署專案工作計畫(2005)。
吳義林,「南部地區懸浮微粒監測與超級測站規劃評估」,行政院環保署(2003)。
李崇德,「九十一年度超級測站操作維護及運轉計畫」,行政院環保署(2002)。
林允涵,「大氣超細微粒與前驅氣體轉化關連性研究」,國立高雄第一科技大學環境與安全衛生工程系碩士論文,高雄(2004)。
林文印,陳志傑,張章堂,「氣膠物理化學反應機制模式之建立」,行政院環境保護署八十七年度科技研究發展專案計畫(1997)。
林志忠,「大氣中陰離子及重金屬之粒徑分佈及乾沈降研究」,國立屏東科技學院環境工程技術研究所碩士論文,屏東(1996)。
許文昌,李崇德,「台北都會區氣懸微粒污染來源推估」,第九屆空氣污染控制技術研討會,第189-202頁(1992)。
郭正傑,吳義林,「南部懸浮微粒超級測站自動儀器與手動儀器之比對」,第十八屆空氣污染控制技術研討會論文集,台中(2006)。
陳德鈞,季延安,林肇信,「大氣污染化學」,科技圖書股份有限公司,台北市,第62-84頁(1993)。
陳賢焜,吳義林,「高雄縣懸浮微粒PM10與PM2.5之成份與來源」,高雄縣環境保護局八十八年度學術機構空氣污染防制措施研究及訓練計畫(1999)。
廖哲甫,「空氣污染事件日次微米微粒水溶性離子組成及氣相前驅物之研究」,國立成功大學環境工程研究所碩士論文,台南(2006)。