| 研究生: |
許維哲 Hsu, Wei-Che |
|---|---|
| 論文名稱: |
行星齒輪系之動態特性分析 Analysis of Dynamic Characteristics of a Planetary Gear System |
| 指導教授: |
崔兆棠
Choi, Siu-Tong |
| 共同指導教授: |
林博正
Lin, Bor-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 52 |
| 中文關鍵詞: | 有限元素法 、Lagrangian法 、行星齒輪系統 |
| 外文關鍵詞: | Finite element method, Lagrangian approach, Planetary gear system |
| 相關次數: | 點閱:120 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要以有限元素法分析風力發電機中重負載之行星齒輪增速機的動態特性。假設各齒輪、行星架皆為剛體,轉軸為撓性的Timoshenko樑。以Lagrangian法求得行星齒輪系統的運動方程式,再以Runge-Kutta法求解系統動態響應。本文探討行星齒輪系統在不同行星齒輪個數下,各齒輪之側向位移、太陽與行星齒輪間之壓力角及接觸比及支座軸承反力的變化。數值結果顯示,隨著行星齒輪數目增加,各齒輪與輸出端軸承之側向位移因而減小,壓力角及接觸比的變化幅度也減小,但輸入端軸承之側向位移卻依行星齒輪個數增加而增大。
Dynamic characteristics of a heavily-loaded planetary gear speed increaser of a wind turbine is analyzed by using the finite element method in this thesis. All gears and carrier are considered to be rigid and rotating shafts are modeled as Timoshenko beams. The Lagrangian approach is used to derive the equations of motion of planetary gear system, and dynamic response is obtained by using the Runge-Kutta method. The effects of number of planetary gears on the lateral displacement of gears, pressure angle and contact ratio between the sun gear and the planetary, reaction force of bearings of the system are investigated. Numerical results of this research show that when the number of planetary gears increases, lateral displacements of gears and of the bearing at the output terminal decrease, and so do the amplitude of pressure angle and contact ratio. However, lateral displacements of the bearing at the input terminal increase as the number of planetary gears increases.
[1] Ruhl, R. L., and Booker, J. F., “A Finite Element Model for Distributed Parameter Turborotor System,” ASME Journal of Engineering for Industry, Vol. 94, 1972, pp. 126-132.
[2] Nelson, H. D., and McVaugh, J. M., “The Dynamics of Rotor-Bearing Systems Using Finite Elements,” ASME Journal of Engineering for Industry, Vol. 98, 1976, pp. 593-600.
[3] Nelson, H. D., “A Finite Rotating Shaft Element Using Timoshenko Beam Theory,” ASME Journal of Mechanical Design, Vol. 102, 1980, pp. 793-803.
[4] Greenhill, L. M., Bickford, W.B., and Nelson, H. D., “A Conical Beam Finite Element for Rotor Dynamic Analysis,” ASME Journal of Vibration, Acoustics, Stress, Reliability in Design, Vol. 107, 1985, pp. 421-430.
[5] Adams, M. L., “Nonlinear Dynamics of Flexible Multi-Bearing Rotors,” Journal of Sound and Vibration, Vol. 71, 1980, pp. 129-144.
[6] Rao, J. S., and Sarma, K. V. B., “On Transient Dynamics of Rotors with Asymmetric Cross-Section Supported on Fluid Film Bearing,” Proceedings of 4th International Modal Analysis Conference, 1986, pp. 1110-1116.
[7] Firoozian, R., and Stanway, R., “Design and Application of a Finite Element Package for Modeling Turbomachinery Vibrations,” Journal of Sound and Vibration, Vol. 134, 1989, pp. 115-137.
[8] Lund, J., “Critical Speed, Stability and Response of a Geared Train of Rotors,” ASME Journal of Mechanical Design, Vol. 100, 1978, pp. 535-538.
[9] Iida, H., Tamura, A., Kikuchi, K., and Agata, H., “Coupled Torsional-Flexural Vibration of a Shaft in a Geared System of Rotors,” Bull JSME, Vol. 23, 1980, pp. 2111-2117.
[10] Neriya, S. V., Bhat, R. B., and Sankar, T. S., “Effect of Coupled Torsional-Flexural Vibration of a Geared Shaft System on Dynamic Tooth Load, ” The Shock and Vibration Bulletin, Vol. 54, 1984, pp. 67-75.
[11] Neriya, S. V., Bhat, R. B., and Sankar, T. S., “Coupled Torsional-Flexural Vibration of a Geared Shaft System Using Finite Element Method,” The Shock and Vibration Bulletin, Vol. 55, 1985, pp. 13-25.
[12] Botman, M., “Epicyclic Gear Vibration,” Journal of Engineering for Industry, Vol. 17, 1976, pp. 811-815.
[13] Parker, R. G., “A Physical Explanation for the Effectiveness of Planet Phasing to Suppress Planetary Gear Vibration,” Journal of Sound and Vibration, Vol. 236, 2000, pp. 561-573.
[14] Lin, J., and Parker, R. G., “Analytical Characterization of the Unique Properties of Planetary Gear Free Vibration,” ASME Journal of Vibration and Acoustics, Vol. 121, 1999, pp. 316-321.
[15] Lin, J., and Parker, R. G., “Sensitivity of Planetary Gear Natural Frequencies and Vibration Modes to Model Parameters,” Journal of Sound and Vibration, Vol. 228, 1999, pp. 109-128.
[16] Hibbeler, R. C., Engineering Mechanics Dynamics, Pearson Education Taiwan Ltd, 2007.
[17] 黃忠立, 轉子-軸承系統在多臨界轉速限制下之輕量化設計, 國立成功大學航空太空工程研究所碩士論文, 1987.
[18] Nevzat, O. H., and Houser, D. R., “Dynamic Analysis of High Speed Gears by Using Loaded Static Transmission Error,” Journal of Sound and Vibration, Vol. 125, 1988, pp. 71-83.
[19] 陳膺中, 具殘留軸曲的齒輪轉子軸承系統動態特性之分析, 國立中正大學機械工程學系碩士論文, 2005.
[20] 阮競揚, 含橫向裂縫的轉子軸承系統之動態特性分析, 國立成功大學航空太空工程研究所碩士論文, 1997.