簡易檢索 / 詳目顯示

研究生: 曾珮瑄
Tseng, Pei-Hsuan
論文名稱: 探討2/2μm迴焊後銅細線經奈米級彎曲測試後之金相組織與機械性質
Mechanical Properties and Microstructure Analysis of 2/2μm Copper Fine Line Using Nano-Scale Bending Test After Reflow Process
指導教授: 郭瑞昭
Kuo, Jui-Chao
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 131
中文關鍵詞: 重分布層奈米彎曲測試機械性質影像交互相關
外文關鍵詞: Redistribution layer, nano-bending test, mechanical properties, digital image correlation
相關次數: 點閱:31下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Extend Abstract II 誌謝 XI 目錄 XIV 圖目錄 XVI 表目錄 XX 第一章 前言 1 第二章 文獻回顧 3 2.1 奈米拉伸試驗 3 2.2 奈米彎曲試驗 4 第三章 彎曲測試的模型 8 3.1 三點彎曲集中力測試 8 3.2 三點彎曲分布力測試 13 3.3 懸臂梁彎曲測試 18 第四章 實驗及分析方法 21 4.1 實驗材料 21 4.1.1 試片取樣 21 4.1.2 實驗流程 22 4.1.3 試片製備 23 4.1.4 座標轉換 23 4.2 三點彎曲集中力測試 26 4.2.1 降伏強度分析 26 4.3 三點彎曲分布力測試 27 4.3.2 降伏強度分析 27 4.4 懸臂梁彎曲測試 28 4.4.1 降伏強度分析 28 4.4.2 最大抗拉強度分析 29 4.4.3 晶粒尺寸分析 30 4.4.4 方位取向差分析 31 4.4.5 泰勒因子 31 4.4.6 電子通道對比影像(Electron Channeling Contrast Imaging, ECCI) 32 第五章 實驗結果 41 5.1 三點彎曲集中力測試 41 5.1.1 降伏強度分析 41 5.1.2 根據彎曲行為進行應力與應變之修正 44 5.1.3 根據壓痕行為進行應力與應變之修正 47 5.2 三點彎曲分布力測試 50 5.2.1 降伏強度分析 50 5.2.2 楊氏係數之修正 51 5.3 懸臂梁彎曲測試 55 5.3.1 降伏強度分析 55 5.3.2 楊氏係數之修正 59 5.3.3 最大抗拉強度分析 71 5.3.4 晶粒尺寸 73 5.3.5 晶粒方位取向差 80 5.3.6 泰勒因子 87 5.3.7 電子通道對比影像 94 第六章 討論 97 6.1 不同測試方法楊氏係數之比較 97 6.2 不同測試方法降伏強度之比較 99 6.3 最大抗拉強度之比較 101 6.4 奈米彎曲測試後對金相組織之影響 103 第七章 結論 104 參考文獻 105

    1. Cai, Y.-J., Y. Hsu, and Y.-W. Chang. Simultaneous pre-and free-assignment routing for multiple redistribution layers with irregular vias. in 2021 58th ACM/IEEE Design Automation Conference (DAC). 2021. IEEE.
    2. Schmidt, R., T. Beck, R. Rooney, and A. Gewirth. Optimization of electrodeposited copper for sub 5 µm L/S redistribution layer lines by plating additives. in 2018 IEEE 68th Electronic Components and Technology Conference (ECTC). 2018. IEEE.
    3. Callister, W.D. and D.G. Rethwisch, Chapter 6 - Mechanical Properties of Metals, in Materials science and engineering(Ninth Edition). 2015, Wiley: Hoboken, NJ. p. 168_215.
    4. Huang, F.-Y., Y.-W. Liu, and J.-C. Kuo, Uncertainties in the representative indentation stress and strain using spherical nanoindentation. Applied Nanoscience, 2021. 11(3): p. 895-909.
    5. Suwito, W., M.L. Dunn, and S.J. Cunningham. Mechanical behavior of structures for microelectromechanical systems. in Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97). 1997. IEEE.
    6. Tsuchiya, T., O. Tabata, J. Sakata, and Y. Taga, Specimen size effect on tensile strength of surface-micromachined polycrystalline silicon thin films. Journal of Microelectromechanical Systems, 1998. 7(1): p. 106-113.
    7. Sharpe, W.N., D.A. LaVan, and R.L. Edwards. Mechanical properties of LIGA-deposited nickel for MEMS transducers. in Proceedings of International Solid State Sensors and Actuators Conference (Transducers' 97). 1997. IEEE.
    8. Haque, M. and M. Saif, In-situ tensile testing of nano-scale specimens in SEM and TEM. Experimental mechanics, 2002. 42: p. 123-128.
    9. Vo, H., A. Reichardt, D. Frazer, N. Bailey, P. Chou, and P. Hosemann, In situ micro-tensile testing on proton beam-irradiated stainless steel. Journal of Nuclear Materials, 2017. 493: p. 336-342.
    10. Gall, K., M.L. Dunn, Y. Liu, D. Finch, M. Lake, and N.A. Munshi, Shape memory polymer nanocomposites. Acta Materialia, 2002. 50(20): p. 5115-5126.
    11. Srikar, V. and S.M. Spearing, A critical review of microscale mechanical testing methods used in the design of microelectromechanical systems. Experimental mechanics, 2003. 43: p. 238-247.
    12. CELI, A.N.R., N.S.Z. UPOGIBNIMI, and P.Z.M. IGLO, Determination of elastic-plastic properties of alporas foam at the cell-wall level using microscale-cantilever bending tests. Materiali in tehnologije, 2015. 49(2): p. 203-206.
    13. Li, J., H. Li, X. Yun, and A.S. Fok, A comparison of bond strengths measured using cantilever bending and micro-tensile methods. Dental materials, 2011. 27(12): p. 1246-1251.
    14. Schaufler, J., C. Schmid, K. Durst, and M. Göken, Determination of the interfacial strength and fracture toughness of aC: H coatings by in-situ microcantilever bending. Thin Solid Films, 2012. 522: p. 480-484.
    15. Yang, H., Y. Pei, G. Song, and J.T.M. De Hosson, Healing performance of Ti2AlC ceramic studied with in situ microcantilever bending. Journal of the European Ceramic Society, 2013. 33(2): p. 383-391.
    16. Fu, J., F. Wang, T. Zhu, W. Wang, Z. Liu, F. Li, Z. Liu, G.A. Denu, J. Zhang, and H.-X. Wang, Single crystal diamond cantilever for micro-electromechanical systems. Diamond and Related Materials, 2017. 73: p. 267-272.
    17. Deng, Y., T. Hajilou, D. Wan, N. Kheradmand, and A. Barnoush, In-situ micro-cantilever bending test in environmental scanning electron microscope: Real time observation of hydrogen enhanced cracking. Scripta Materialia, 2017. 127: p. 19-23.
    18. Demir, E., F. Roters, and D. Raabe, Bending of single crystal microcantilever beams of cube orientation: Finite element model and experiments. Journal of the Mechanics and Physics of Solids, 2010. 58(10): p. 1599-1612.
    19. Hashigata, K., T.-F.M. Chang, H. Tang, C.-Y. Chen, D. Yamane, T. Konishi, H. Ito, K. Machida, K. Masu, and M. Sone, Strengthening of micro-cantilever by Au/Ti bi-layered structure evaluated by micro-bending test toward MEMS devices. Microelectronic Engineering, 2019. 213: p. 13-17.
    20. Colas, G., P. Serles, A. Saulot, and T. Filleter, Strength measurement and rupture mechanisms of a micron thick nanocrystalline MoS2 coating using AFM based micro-bending tests. Journal of the Mechanics and Physics of Solids, 2019. 128: p. 151-161.
    21. Armstrong, D.E., A.J. Wilkinson, and S.G. Roberts, Measuring anisotropy in Young’s modulus of copper using microcantilever testing. Journal of materials research, 2009. 24: p. 3268-3276.
    22. Němeček, J., V. Králík, V. Šmilauer, L. Polívka, and A. Jäger, Tensile strength of hydrated cement paste phases assessed by micro-bending tests and nanoindentation. Cement and Concrete Composites, 2016. 73: p. 164-173.
    23. Csanádi, T., M. Vojtko, and J. Dusza, Deformation and fracture of WC grains and grain boundaries in a WC-Co hardmetal during microcantilever bending tests. International Journal of Refractory Metals and Hard Materials, 2020. 87: p. 105163.
    24. Gottstein, G., Chapter 6 - Mechanical Properties, in Physical foundations of materials science. 2004, Springer: Berlin. p. 197_302.
    25. Callister, W.D. and D.G. Rethwisch, Chapter 7 - Dislocations and Strengthening Mechanisms, in Materials science and engineering. 2015, Wiley: Hoboken, NJ. p. 216_250.
    26. Zaefferer, S. and N.-N. Elhami, Theory and application of electron channelling contrast imaging under controlled diffraction conditions. Acta Materialia, 2014. 75: p. 20-50.
    27. Fraser, H.L., D.W. McComb, and R.E. Williams, Transmission electron microscopy for physical metallurgists, in Physical Metallurgy. 2014, Elsevier. p. 1143-1226.
    28. Kucheyev, S., A. Hamza, J. Satcher Jr, and M. Worsley, Depth-sensing indentation of low-density brittle nanoporous solids. Acta Materialia, 2009. 57(12): p. 3472-3480.
    29. Hay, J.C. and G. Pharr, Experimental investigations of the Sneddon solution and an improved solution for the analysis of nanoindentation data. MRS Online Proceedings Library, 1998. 522: p. 39-44.
    30. Murata, N., K. Tamakawa, K. Suzuki, and H. Miura. Effect of micro-texture of electroplated copper thin-films on their mechanical and electrical reliability. in 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference. 2009. IEEE.

    無法下載圖示 校內:2029-08-12公開
    校外:2029-08-12公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE