| 研究生: |
林憶雯 Lin, Yi-Wen |
|---|---|
| 論文名稱: |
室溫離子液體中以去合金法製作奈米孔洞結構的銅電極 Fabrication of nanoporous copper by selective dealloying of CuZn surface alloy in room temperature ionic liquids |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 奈米孔洞 、銅 |
| 外文關鍵詞: | nanoporous, copper |
| 相關次數: | 點閱:58 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文中,利用兩步驟的電化學法,在室溫離子液體50-50mole% ZnCl2-EMIC中製作奈米孔洞結構的銅電極。作法上是將鋅電沉積在銅絲電極或者是銅片電極上,再利用電化學氧化的方式,選擇性將鋅從銅電極上溶解,而在銅電極上會形成奈米孔洞結構。在內容中,會探討電沉積時的電流、電位、電量、溫度以及氧化時的電位、溫度、電量對孔洞結構的影響。此外也探討室溫離子溶液成分對孔洞的影響。之後藉由XRD、SEM以及EDS的觀察,探討孔洞形成的機制。
Formation of porous copper surface by a convenient two-step process involving electrochemical formation of a binary copper-zinc alloy film on copper surface followed by electrochemical etching of the zinc from the alloy. Both of the deposition and dealloying steps were performed in a single bath of low-temperature zinc chloride-1- ethyl-3-methylimidazolium chloride ionic liquid at 120 oC without using any other corrosive acids or bases. The effects of the deposited zinc quantity, deposition potential, current, and temperature on the structures, morphologies and mechanism of the porous copper film were examined.
第六章 參考文獻
1.(a) Trojanowicz, M. Trac-Trend. Anal. Chem. 2006, 25, 480-489; (b)
Balasubramanian, K,; Burghard, M. Anal. Bioanal. Chem. 2006, 385, 452-468;
(c) Katz, E.; Willner, I.; Wang, J. Electroanalysis 2006, 16, 19-44;(d)
Wanekaya, A. K.; Chen, W.; Myung, N. V.; Mulchandani, A. Electroanalysis
2006, 18, 530-550;(e) Luo, X. L.; Morrin, A.; Killard, A. J.; Smyth, M. R.
Electroanalysis 2006, 18, 319-326;(f) Welch, C. W.; Compton, R. G. Anal.
Bioanal. Chem. 2006, 384, 601-619;(g) Gong, K. P.; Yan, Y. M.; Zhang, M. N.;
Su, L.; Xiong, S. X.; Mao, L. Q. Aanl. Sci. 2005, 21, 1383-1393.
2.Wang, C.; Yang, C.; Song, Y.; Gao, W.; Xia, X. Adv. Funct. Mater. 2005, 15,
1267-1275.
3.Park, S.; Chung, T. D.; Kim, H. C. Anal. Chem. 2003, 75, 3046-3049.
4.Song, Y. Y.; Zhang, D.; Gao, W.; Xia, X. H. Chem. Eur. J. 2005, 11, 2177-
2182.
5.Liu, J., Feng, X.; Fryxell, G. E.; Wang, L.-Q.; Kim, A. Y.; Gong, M., Adv.
Mater., 1998, 10, 161-165.
6.West, J. L.; Halas, N. J. Annu. Rev. Biomed. Eng., 2003,5, 285-292.
7.Chan, V. Z. H.; Hoffman, J.; Lee, V. Y.; Iatrou, H.; Avgeropoulos, A.;
Hadjichristidis, N.; Miller, R. D. Thomas, E. L. Science 1999, 286, 1716-
1719.
8.Xia, Y. N.; Gates, B.; Yin, Y. D.; Lu, Y. Adv. Mater. 2000, 12, 693-713.
9.Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S.
Nature 1992, 359, 710-712.
10.Seshadri, R.; Meldrum, F. C. Adv. Mater. 2000, 12, 1149.
11.Masuda, H.; Fukuda, K. Science 1995, 268, 1466-1468.
12.Smith, R. L.; Collins, S. D.; Collins, S. D. J. Appl. Phys. 1992, 71, R1-
R22.
13.Enke, D.; Janowski, F.; Schwieger, W. Microporous Mesoporous Mater. 2003,
60, 19-30.
14.Attard, G. S.; Bartlett, P. N.; Coleman, N. R. B.; Elliott, J. M.; Owen, J.
R.; Wang, J. H. Science 1997, 278, 838-840.
15.Gmitchell, D. J.; Tiddy, G. J. T.; Waring, J.; Bostock, T.; McDonald, M. P.
J. Chem. Soc., Faraday Trans. I 1983, 79, 975-1000.
16.Velev, O. D.; Tessier, P. M.; Lenhoff, A. M.; Kaler, E. W. Nature 1999,
401, 548.
17.Newman, R. C.; Corcoran, S. G.; Erlebacher, J.; Aziz, M. J.; Sieradzki, K.
MRS Bull. 1999, 24-28.
18.Lechtman, H. Sci. Am. 1984, 250, 38-45.
19.Forty, A. J. Nature 1979, 282, 597-598.
20.(a)Tammann, G. Anorg. Chem. 1919, 107, 9. (b) Tammann, G. Anorg. Chem.
1920, 112, 233. (c) Tammann, G. Anorg. Chem. 1920, 114, 281.
21.Masing, G. Anorg. Chem. 1921, 118, 293.
22.Gerischer , H.; Rickert, H. Z. Metallkunde, 1955,46, 681
23.Tischer, R. P.; Gerischer, H. Z. Elektorchem., 1962, 62, 50
24.Pickering, H. W.; Wagner, C. J. Electrochem. Soc. 1967, 114, 698-706.
25.Pickering, H. W. Corros. Sci. 1983, 23, 1107-1120.
26.Sieradzki, K. J. Phys. C 1985, 18, L855-L856.
27.Sieradzki, K.; Newman, R. C. J. Phys. Chem. Solids 1987, 48, 1101-1113.
28.Erlebacher, J.; Aziz, M. J.; Karma, A.; Dimitrov, N.; Sieradzki, K. Nature
2001, 410, 450-453.
29.Erlebacher, J. J . Electrochem. Soc. 2004, 151, C614-C626.
30.Fukumizu, T.; Kotani, A.; Yoshida, A.; Katagiri, A., in press.
31.Ding, Y.; Kim Y.-J.; Erlebacher, J. Adv. Mater. 2004, 16, 1897-1900.
32.Schofiel, E. T. I. Met. Finish. 2005, 83, 35-41.
33.Stratmann, M.; Rohwerder, M. Nature 2001, 410, 420-421.
34.Pugh, D. V.; Dursun, A.; Corcoran, S. G. J. Mater. Res. 2003, 18, 216-220.
35.Ji, C.; Searson, P. C. J. Phys. Chem. B 2003, 107, 4494-4499.
36.Katagiri, A.; Nakata, M. J. Electrochem. Soc. 2003, 150, C585-C590.
37.Oppenheim, I. C.; Trevor, D. J.; Chidsey, C. E. D.; Trevor, P. L.;
Sieradzki, K. Science 1991, 254, 687-689.
38.Ding, Y. ;Erlebacher, J. J. Am. Chem. Soc. 2003, 125, 7772-777.
39.Ding, Y.; Chen, M.; Erlebacher, J. J. Am. Chem. Soc. 2004, 126, 6876-6877.
40.Dursun, A.; Pugh, D. V.; Corcoran, S. G. J. Electrochem. Soc. 2003, 150,
B355-B360.
41.Biener, J.; Hodge, A. M.; Hamza, A. V.; Hsiung, L. M.; Satcher, J. H., Jr
J. Appl. Phys. 2005, 97, 024301.
42.Hakamada, M.; Mabuchi M. Nano Lett. 2006, 6, 882-885.
43.Pugh, D. V.; Dursun, A.; Corcoran, S. G.. J. Mater. Res. 2003, 18, 216-221.
44.Pugh, D. V.; Dursun, A.; Corcoran, S. G. J. Electrochem. Soc. 2005, 152,
B455-B459.
45.Al-Kharafi, F. M.; Ateya, B. G., Abd Allah, R. M. J. Appl. Electrochem.
2004, 34, 47-53.
46.Thorp. J. C.; Sieradzki, K.; Tang, L.; Crozier, P. A.; Misra, A.; Nastasi,
M.; Mitlin, D.; Picraux, S. T. Appl. Phys. Lett. 2006, 88, 033110.
47.Sun, l.; Chien, C.-L.; Searson, P. C. Chem. Mater. 2004, 16, 3125-3129.
48.Walden, P. Bull. Acad. Imper. Sci. 1914, 1800
49.Wasserscheid, P.; Welton, T. Eds.; Wiley-VcH, Weinheim, Ionic Liquids in
Synthesi, 2003
50.Rogers, R. D., Sheldon, L. R. Eds.; ACS Symposium Series 818; American
Chemical Society: Washing ton, DC, Ionic Liquids, Industrial applications
to Green Chemistry, 2002
51.(a)Nardi, J. C.; Hussey, C. L.; King, L. A. US Pat., 1978, 4 ,122 245 ;(b)
Gale, R. J., Gilbert, B. Osteryoung, R. A.; Inorg. Chem. 1978, 17, 2728.
52.Wilkes, J. S.; Levisky, J. A. ; Wilson, R. A. Hussey, C. L. Inorg. Chem.
1982, 21, 1263-1264.
53.Wilkes, J. S.; Zaworotko, M. J. J. Chem. Soc. Chem. Commun. 1992, 965-967
54.Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; De Souza, R. F.; Dupont,
J. Polyhedron 1996, 15, 1217-1219.
55.Holbrey, J. D.; Seddon, K. R. Clean Prod. Process 1999, 1, 223-236.
56.Olivier, H. J. Mol. Catal. 1999, 146, 285-289.
57.Welton, T. Chem. Rev. 1999, 99, 2071-2083.
58.Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772-3789.
59.Gordon, C. M. Appl. Catal. A 2001, 222, 101-107.
60.Sheldon, R. Chem. Commun. 2001, 2399-2407.
61.Wilkes, J. S. Green Chem. 2002, 4, 73-80.
62.Dupont, J.; de Souza, R. F.; Suarez,P. A. Z. Chem. Rev. 2002, 102, 3667-
3692.
63.Welton, T. Coordin. Chem. Rev. 2004, 248, 2459-2477.
64.Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Tetrahedron 2005, 61,
1015-1060.
65.Earl, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72, 1391.
66.Hussey, C. L. in Chemistry of Nonaqueous Solutions, Current Progress (Eds.:
G. Mamantov, A. I. Popov), VCH, New York, 227, 1994
67.(a)Wasserscheid, P.; Keim, W. Angew. Chem. 2000, 112, 3926;(b) Angew. Chem.
Int. Ed. 2000,39, 3772
68.Welton, T. Chem. Rev. 1999, 99, 2071
69.Huang, J. F., Sun, I.-W. Adv. Funct. Mater. 2005, 15, 5, 1-6
70.Huang, J. F., Sun, I.-W. Chem. Mater., 2004, 16, 10.
71.Pickering, H. W. J . Electrochem. Soc. 1970, 117, 1, 8-14
72.Sieradzki, K.; Li, R. Phys. Rev. Lett. 1992, 68, 1168.
73.Yeh, F.-W.; Tai, C.-C.; Huang, J.-F.; Sun, I-W. J. Phys. Chem. B 2006, 110,
5215-5222.
74.Diffusion in Crystalline Solids; Murch, G. E.; Nowick A. S.; Academic
Press, Inc; Orlando, Florida, U.S.A., 1984
75.Electrodeposition: The Materials Science of Coatings and Substrates; Dini,
J. W., Ed.; Noyes publications:Park Ridge, New Jersey, U.S.A., 1993.
76.Balluffi, R. W.; Cahn, J. W. Acta Metall. 1981, 29, 493-500.