| 研究生: |
簡秀珊 Chien, Hsiu-Shan |
|---|---|
| 論文名稱: |
添加鎂對SM570鋼中介在物改質的影響 Effect of Magnesium Addition on the Modification of Inclusions in the SM570 Steel |
| 指導教授: |
黃文星
Hwang, Weng-Sing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 介在物 、SM570 、改質 、鎂 |
| 外文關鍵詞: | Inclusions, SM570, Modification, Magnesium |
| 相關次數: | 點閱:51 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著現代經濟的發展,對於鋼鐵品質的要求愈來愈高。細化晶粒是能夠同時提升鋼鐵韌性及強度的唯一方法。而細小分散的高熔點介在物可用來誘導IGF的成核及抑制晶粒成長,因此透過介在物改質來獲得所需介在物變得更加重要。
本研究以 SM570 鋼種實際鋼液成分進行熱力學平衡計算,獲得 1873 K 條件下該鋼種的Mg、Al、Ti、O之間的熱力學平衡關係圖;計算結果顯示,Mg、Al、Ti之脫氧能力依次減弱; MgO、MgAl2O4、Al2O3在鋼液中的存在形態與鋼液中平衡的 Mg、Al、O 含量密切相關。並同時針對此鋼種進行加鎂實驗,之後對原始鋼種及不同鎂添加量之試樣進行分析。
實驗結果顯示在當前鋼液成分下向鋼液中添加微量 Mg 就可以使介在物實現改質,且對於介在物平均粒徑的減小有良好的效果,並得知隨著鎂添加量增加的介在物變性路徑為 Al2O3→ Spinel (Al2O3•MgO) →MgO。本研究最後所得到之結果為:在當前鋼液成分下添加 5.45 ppm Mg 時可以達到介在物改質的最佳效果,其介在物之平均粒徑最小、單位面積所含之介在物數量最多且可生成尺寸較小之 Spinel。
With the modern economic development, the demand of the steel quality is getting higher and higher. Grain refinement is the only way to enhance the toughness and strength of the steel at the same time. Because high melting point and small dispersed inclusions can be used to induce nucleation of IGF and inhibit the grain growth, using the modification of inclusions to obtain the desired inclusions become more and more important.
In this study, the chemical compositions of SM570 are used for thermodynamic equilibrium calculations to obtain the thermodynamic equilibrium diagrams among Mg, Al, Ti, and O. The calculated results show the relation among the state of MgO, MgAl2O4, and Al2O3 are closed to the equilibrium contents of Mg, Al, and O in the liquid steel. In the experimental process, different amounts of magnesium were added to the original SM570 samples, and then all the samples are analyzed.
Experimental results show that as long as adding a small amount of magnesium to the SM570 under the current chemical composition, the modification of the inclusions can be achieved. After the magnesium addition, the average particle size of the inclusions are decreased effectively. And with the increase of the magnesium addition, the path of the modification for inclusion is: Al2O3 → Spinel (Al2O3•MgO) → MgO.
Finally, considering the smallest average particle size of the inclusions, the most number of the inclusions contained in the unit area, and the generation of the small size Spinel, it shows that with the 5.45ppm magnesium addition , the best modified results of the inclusions can be achieved under the current chemical composition of SM570 steel.
[1] 王國棟、劉相華、李維娟、杜林秀、張紅梅、袁建光、張丕軍,超級Super-SS400鋼的工業軋製實驗,鋼鐵,第 36 期,39-43 頁 (2001 年).
[2] S. Ogibayashi, “Advances in Technology of Oxide Metallurgy,” Nippon Steel Technical Report, 61, 70-76 (1994).
[3] Y. Sahai and T. Emi, Tundish Technology for Clean Steel Production, Hackensack, NJ: World Scientific (2008).
[4] D. Y. Sheng, M. Söder, P. Jönsson, and L. Jonsson, “Modeling Micro-inclusion Growth and Separation Ingas-stirred Ladles,” Scandinavian Journal of Metallurgy, 31, 134-147 (2002).
[5] 羅新傑,結構用鋼胚中介在物之研究,成功大學材料系碩士論文 (2012 年)。
[6] C. E. Sims and F. B. Dahle, "Effect of Aluminum on the Properties of Medium-carbon Cast Steel," Transactions of the American Foundrymen's Association, 46, 65-132 (1938).
[7] R. Kiessling and N. Lange, Non-metallic Inclusions in Steel, 2nd ed. London: Metals Society (1978).
[8] M. Hasegawa and K. Takeshita, Strengthening of Steel by the Method of Spraying Oxide Particles into Molten Steel, Metallurgical Transactions B, 9, 383-388 (1978).
[9] S. Ogibayashi “Advances in Technology of Oxide Metallurgy” Nippon Steel Technical Report, 61, 70-76 (1994).
[10] H. Bhadeshia and R. Honeycombe, Steels: Microstructure and Properties, Butterworth-Heinemann (2011).
[11] D. J. Abson and R. J. Pargeter, "Factors Influencing As-deposited Strength, Microstructure, and Toughness of Manual Metal Arc Welds Suitable for C–Mn Steel Fabrications," International Metals Reviews, 31, 141-196 (1986).
[12] O. Grong and D. K. Matlock, "Microstructural Development in Mild and Low-alloy Steel Weld Metals," International Metals Reviews, 31, 27-48 (1986).
[13] Y. Tomita, N. Saito, T. Tsuzuki, Y. Tokunaga, and K. Okamoto, "Improvement in HAZ Toughness of Steel by Tin-Mns Addition," ISIJ International, 34, 829-835 (1994).
[14] Z. Zhang and R. A. Farrar, "Role of Non-metallic Inclusions Information of Acicular Ferrite in Low Alloy Weld Metals," Materials Science and Technology, 12, 237-260 (1996).
[15] H. Mabuchi, R. Uemori, and M. Fujioka, "The Role of Mn Depletion in Intra-granular Ferrite Transformation in the Heat Affected Zone of Welded Joints with Large Heat Input in Structural Steels," ISIJ International, 36, 1406-1412 (1996).
[16] A. Kojima, A. Kiyose, R. Uemori, M. Minagawa, M. Hoshino, T. Nakashima, K. Ishida, and H. Yasui, "Super High HAZ Toughness Technology with Fine Microstructure Imparted by Fine Particles," Shinnittetsu Giho, 380, 2-5 (2004).
[17] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, 3rd ed., Boston: PWS-Kent (1992).
[18] S. Matsuda and N. Okumura, "Effect of Dispersion State of TiN on the Austenite Grain Size of Low-carbon Low Alloy Steels," The Iron and Steel Institute of Japan, 62, 1209-1218 (1976).
[19] D. S. Sarma, A. V. Karasev, and P. G. Jönsson, "On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels," ISIJ International, 49, 1063-1074 (2009).
[20] R. A. Ricks, P. R. Howell, and G. S. Barritte, "The Nature of Acicular Ferrite in HSLA Steel Weld Metals," Journal of Materials Science, 17, 732-740 (1982).
[21] G. A. Chadwick, Metallography of Phase Transformations, London: Butterworths (1972).
[22] I. Madariaga and I. Gutierrez, "Role of the Particle-matrix Interface on the Nucleation of Acicular Ferrite in a Medium Carbon Microalloyed Steel," Acta Materialia, 47, 951-960 (1999).
[23] K. Yamamoto, T. Hasegawa, and J. Takamura, "Effect of Boron on Intra-granular Ferrite Formation in Ti-oxide Bearing Steels," ISIJ International, 36, 80-86 (1996).
[24] J. L. Lee and Y. T. Pan, "Effect of Sulfur-content on the Microstructure and Toughness of Simulated Heat-affected Zone in Ti-killed Steels," Metallurgical Transactions A-Physical Metallurgy and Materials Science, 24, 1399-1408 (1993).
[25] O. M. Akselsen, "Diffusion Bonding of Ceramics," Journal of Materials Science, 27, 569-579 (1992).
[26] S. H. Zhang, N. Hattori, M. Enomoto, and T. Tarui, "Ferrite Nucleation at Ceramic/ Austenite Interfaces," ISIJ International, 36, 1301-1309 (1996).
[27] Z. Chen, M. H. Loretto, and R. C. Cochrane, "Nature of Large Precipitates in Titanium-containing HSLA Steels," Materials Science and Technology, 3, 836-844 (1987).
[28] M. Prikryl, A. Kroupa, G. C. Weatherly, and S. V. Subramanian, "Precipitation Behavior in a Medium Carbon, Ti-V-N Microalloyed Steel," Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 27, 1149-1165 (1996).
[29] W. Yan, Y. Y. Shan, and K. Yang, "Effect of TiN Inclusions on the Impact Toughness of Low-carbon Microalloyed Steels," Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 37A, 2147-2158 (2006).
[30] S. Kimura, Y. Nabeshima, K. Nakajima, and S. Mizoguchi, "Behavior of Nonmetallic Inclusions in front of the Solid-liquid Interface in Low-carbon Steels," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 31, 1013-1021 (2000).
[31] S. Kimura, K. Nakajima, and S. Mizoguchi, "Behavior of Alumina-magnesia Complex Inclusions and Magnesia Inclusions on the Surface of Molten Low-carbon Steels," Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 32, 79-85 (2001).
[32] J. Ma, D. Zhan, Z. Jiang, and J. He, "Effect of Ti, Al and Mg Addition on the Impact Toughness of Heat Affected Zone in Low Carbon Steel," Advanced Materials Research, 79-82, 143-146 (2009).
[33] F. Chai, C. F. Yang, H. Su, Y. Q. Zhang, and Z. Xu, "Effect of Magnesium on Inclusion Formation in Ti-killed Steels and Microstructural Evolution in Welding Induced Coarse-grained Heat Affected Zone," Journal of Iron and Steel Research International, 16, 69-74 (2009).
[34] S. Suzuki, K. Ichimiya, and T. Akita, "High Tensile Strength Steel Plates for Shipbuilding with Excellent HAZ Toughness," JFE Technical Report, 5, 24-29 (2005).
[35] 黃文星、付建勳,鋼鐵冶煉之二次精煉與氧化物冶金,合記圖書,台灣台南 (2011 年)。
[36] J. Yang, T. Yamasaki and M. Kuwabara, “Behavior of Inclusions in Deoxidation Process of Molten Steel with in situ Produced Mg Vapor,” ISIJ International, 47, 699-708 (2007).
[37] S. K. Saxena, “Production of Ultra-clean Steels with Better Mechanical Properties with Magnesium Treatment,” Seventy Ninth Conference of the Steelmaking Division of the Iron and Steel Society, Pittsburgh, Pennsylvania; USA, 89-96 (1996).
[38] M. Tateyama, Y. Hiraga, S. Yaniguchi, T. Okimura and K. Hirata, “Deoxidation and Desulfurization of Molten Steel with Mg Containing Wire,” SEAISI Quart (Malaysia), 29, 43-47 (2000).
[39] T. B. Massalski, H. Okamoto, P. R. Subramanian and L. Kacprza, Binary Alloy Phase Diagrams, 2nd edition plus updates, ASM International (1996).
[40] H. Itoh, M. Hino and S. Ban-ya, “Thermodynamics on the Formation of Spinel Nonmetallic Inclusion in Liquid Steel,” Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 28B, 953-956 (1997).
[41] J. Yang, T. Yamasaki and M. Kuwabara, “Behavior of Inclusions in Deoxidation Process of Molten Steel with in situ Produced Mg Vapor,” ISIJ International, 47, 699-708 (2007).
[42] W. G. Seo, W. H. Han, J. S. Kim and J. J. Park, “Deoxidation Equilibria among Mg, Al and O in Liquid Iron in the Presence of MgO.Al2O3 Spinel,” ISIJ International, 43, 201-208 (2003).
[43] H. Itoh, M. Hino and S. Banya, “Thermodynamics on the Formation of Non-metallic Inclusion of Spinel (MgO.Al2O3) in Liquid Steel,” Tetsu- to- Hagane, 84, 85-90 (1998).
[44] K. Fujii, T. Nagasaka and M. Hino, “Activities of the Constituents in Spinel Solid Solution and Free Energies of Formation of MgO, MgO•Al2O3,” ISIJ International, 40, 1059-1066 (2000).
[45] R. Takata, J. Yang and M. Kuwabara, “Characteristics of Inclusions Generated during Al–Mg Complex Deoxidation of Molten Steel,” ISIJ International, 47, 1379-1386 (2007).
[46] A. D. Pelton, G. Eriksson, D. Krajewski, M. Göbbels and E. Woermann, “Measurement and Thermodynamic Evaluation of Phase Equilibria in the Mg-Ti-O System,” Zeitchrift Physikalis che Chemie, 207, 163-180 (1998).
[47] M. I. Pownceby and M. J. Fisher-White, “Phase Equilibria in the Systems Fe2O3-MgO-TiO2 and FeO-MgO-TiO2 between 1173 and 1473 K, and Fe2+-Mg Mixing Properties of Ilmenite, Ferrous-pseudobrookite and Ulvöspinel Solid Solutions,” Contributions To Mineralogy and Petrology, 135, 198-211 (1999).
[48] C. H. Chang, I. H. Jung1, S. C. Park, H. S. Kim and H. G. Lee, “Effect of Mg on the Evolution of Non-metallic Inclusions in Mn-Si-Ti Deoxidised Steel during Solidification: Experiments and Thermodynamic Calculations,” Ironmak Steelmak, 32, 251-257 (2005).
[49] S. C. Park, I. H. Jung, K. S. Oh and H. G. Lee, “Effect of Al on the Evolution of Non-metallic Inclusions in the Mn-Si-Ti-Mg Deoxidized Steel during Solidification: Experiments and Thermodynamic Calculations,” ISIJ International, 44, 1016-1023 (2004).
[50] H. Ono, K. Nakajima, R. Maruo, S. Agawa and T. Usui. “Formation Conditions of Mg2TiO4 and MgAl2O4 in Ti-Mg-Al Complex Deoxidation of Molten Iron,” ISIJ International, 49, 957-964 (2009).
[51] H. Ono, K. Nakajima, T. Ibuta and T. Usui, “Equilibrium Relationship between the Oxide Compounds in MgO-Al2O3-Ti2O3 and Molten Iron at 1873K,” ISIJ International, 50, 1955-1958 (2010).
[52] Q. Y. Han, D. Zhou, and C. X. Xiang, “Determination of Dissolved Sulfur and Mg-S, Mg-O Equilibria in Molten Iron,” Steel Research., 68, 9-14 (1997).
[53] H. Goto, K. I. Miyazawa, and K. Tanaka, “Effect of Oxygen Content on Size Distribution of Oxides in Steel,” ISIJ International, 35 286-291 (1994)