簡易檢索 / 詳目顯示

研究生: 吳柏帆
Wu, Po-fan
論文名稱: 以弱化USP48 基因表現為阿茲海默症新穎治療策略之轉譯醫學研究
The translational study to determine the therapeutic potential of USP48 knockdown for Alzheimer’s disease
指導教授: 廖永豐
Liao, Yung-Feng
共同指導教授: 呂佩融
Lu, Pei-Jung
學位類別: 博士
Doctor
系所名稱: 醫學院 - 跨領域神經科學國際博士學位學程
TIGP on The Interdisciplinary Neuroscience
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 78
中文關鍵詞: 阿茲海默症β 類澱粉蛋白類澱粉前驅蛋白第 48 型泛素特異性蛋白 酶
外文關鍵詞: Alzheimer's disease, Amyloid-β peptide, Amyloid precursor protein, Ubiquitin-specific peptidases 48
相關次數: 點閱:108下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 阿茲海默症主要是由β類澱粉蛋白(Amyloid-β)在病人腦部堆積,導致認知功能退化的一種神經退化性疾病。很不幸的是,目前還沒有能有效抑制β類澱粉蛋白神經毒性所造成的神經退化。類澱粉蛋白是由一系列蛋白酶切割類澱粉前驅蛋白 (Amyloid Precursor Protein,簡稱APP) 所產生,並且也是阿茲海默症病人腦部的老年斑塊中主要的蛋白質成分。雖然之前有研究證明APP 可以被泛素 E3 接合酶標記並引導其降解,但很少有研究探討 APP 的降解是否會受到泛素特異性蛋白酶(ubiquin-specific peptidases,簡稱USPs)調控。之前研究發現泛素特異性蛋白酶的其中一個成員第48型泛素特異性蛋白酶 (USP48) 的mRNA 在阿茲海默症病人的海馬迴當中表現量比正常人還多。因此我們想了解,改變USP48的表現量是否能改變APP 蛋白質的降解速率並進而影響Amyloid-β 的產量。利用有表現黃色螢光蛋白標記的 APP 細胞,我們發現到當細胞過量表現 USP48時, 確實會增加 APP 蛋白質的穩定性,同時增加Amyloid-β的產量。當使用RNA干擾術降低細胞中 USP48的表現量時,則能增強APP 蛋白質被溶酶體裂解的機會,從而減少APP 蛋白的恆定量及Amyloid-β的產量。我們進一步利用阿茲海默症模式轉殖小鼠,以腺病毒載體將USP48的RNA干擾序列送入小鼠的海馬迴腦區,誘發USP48在海馬迴的表現量明顯下降並維持兩個月。結果我們發現,減量表現海馬迴的USP48後,可以顯著增強阿茲海默症轉殖小鼠的學習認知功能,並降低其腦部類澱粉斑塊的堆積量。綜合這些實驗結果,我們證明了USP48具有調節神經系統中APP 蛋白恆定量的全新功能,並驗證可以經由控制USP48此一全新功能達到調控Amyloid-β的產量。這項研究也提供強而有力的理論基礎,可繼續開發USP48標定的阿茲海默症新穎療法。

    The main symptom of Alzheimer’s disease (AD) is a chronic and progressive decline in cognitive function. Unfortunately, the available AD treatments are not curative, and there is no way to halt the progression of cognitive impairment. The primary cause of AD pathogenesis is thought to be amyloid-β (Aβ) peptides, which are generated by the amyloidogenic proteolysis of amyloid precursor protein (APP) and are the main constituents of amyloid plaques. Although many studies have focused on the function of ubiquitin E3 ligases in regulating APP stability, few have investigated how deubiquitinases might contribute to APP homeostasis. Nevertheless, previous studies have demonstrated that the mRNA expression of ubiquitin-specific peptidase 48 (USP48; a member of the ubiquitin-specific peptidase family) is increased in the hippocampus of AD patients. We thus sought to determine if altered USP48 levels might affect the production of Aβ by affecting APP proteostasis. Using a HEK-derived cell line that constitutively expresses yellow fluorescent protein-tagged APP (APP-YFP), we demonstrated that RNA interference-mediated downregulation of USP48 expression enhances lysosomal degradation of APP, leading to a marked reduction of the full-length protein and secreted Aβs. Consistently, we further found that overexpression of USP48 enhances APP protein stability and concomitantly increases the level of secreted Aβ. Finally, we validated the efficacy of USP48 knockdown in vivo using APP/PS1 transgenic mice, finding that downregulation of USP48 in the hippocampus of APP/PS1 mice can diminish the amyloid plaque load and significantly improve cognitive function. Together, our findings suggest that USP48 plays a pivotal role in governing the proteostasis of APP by modulating lysosomal degradation of APP. This study expands the known molecular repertoire that contributes to Aβ homeostasis in the central nervous system and suggests that USP48 might be a valuable therapeutic target for AD.

    Abstract i Acknowledgments v Table of contents vii List of figures xi Abbreviations xiii Chapter 1: Introduction 1 1.1. Alzheimer's disease and APP degradation 1 1.2. Ubiquitin-specific peptidases and Alzheimer's disease 2 1.3. Ubiquitin-specific peptidase 48 3 Chapter 2: Significance of study and objectives 5 Chapter 3: Materials and methods 7 3.1. Reagents 7 3.2. Plasmid DNA 7 3.3. Cell culture and transfection 8 3.4. Primary cortical neuron culture 9 3.5. Preparation of lentiviral stocks 9 3.6. Western blotting 10 3.7. Aβ40 and Aβ42 ELISA 11 3.8. Measurements of sAPPα and sAPPβ levels 11 3.9. Measurement of APP turnover 12 3.10. In vitro deubiquitination assays 12 3.11. APP ubiquitination assays 13 3.12. Immunofluorescence staining and microscopy 13 3.13. LysoTracker live-cell imaging 14 3.14. CatD enzyme activity assay 15 3.15. Confocal imaging of autophagosome/autolysosome 16 3.16. Animal handling 16 3.17. Stereotaxic surgery 17 3.18. Morris water maze 17 3.19. Y-maze 18 3.20. Immunohistochemistry (IHC) 18 3.21. X-34 plaque staining 19 3.22. Statistics 19 Chapter 4: Results 20 4.1. USP48 increases APP protein and Aβ production in APP-YFP cells 20 4.2. Downregulation of USP48 decreases APP protein and Aβ production in APP-YFP-expressing cells 23 4.3. USP48 does not alter γ-secretase activity in C99-CFP-expressing cells 25 4.4. USP48 increases β-secretase expression but does not alter the levels of α- or γ-secretases 26 4.5. USP48 stabilizes APP protein by reducing APP degradation 29 4.6. USP48 does not deconjugate ubiquitin from APP 30 4.7. USP48 knockdown decreases APP-YFP by lysosomal degradation 32 4.8. USP48 increases intracellular vesicular APP in APP-YFP cells 33 4.9. Knockdown of USP48 reduces endosomal APP by enhancing lysosomal degradation 35 4.10. USP48 reduces numbers of acidic lysosomes and CatD enzyme activity 37 4.11. USP48 overexpression impairs autophagic flux and reduces lysosomal protein expression 41 4.12. Knockdown of USP48 in rat primary cortical neurons decreases APP level and production of Aβ and sAPPs 46 4.13. USP48 knockdown in the hippocampus improves short-term and long-term spatial memory in APP/PS1 transgenic mice 47 4.14. USP48 knockdown in APP-PS1 mouse hippocampus reduces amyloid plaque load 51 Chapter 5: Discussion 55 Chapter 6: Conclusions 63 Chapter 7: References 65 Chapter 8: Appendix 78

    Alesi, N., E.W. Akl, D. Khabibullin, H.J. Liu, A.S. Nidhiry, E.R. Garner, H. Filippakis, H.C. Lam, W. Shi, S.R. Viswanathan, M. Morroni, S.M. Ferguson, and E.P. Henske. 2021. TSC2 regulates lysosome biogenesis via a non-canonical RAGC and TFEB-dependent mechanism. Nat Commun. 12:4245.
    Altun, M., B. Zhao, K. Velasco, H. Liu, G. Hassink, J. Paschke, T. Pereira, and K. Lindsten. 2012. Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1alpha (HIF-1alpha) during hypoxia. J Biol Chem. 287:1962-1969.
    Antao, A.M., K. Kaushal, S. Das, V. Singh, B. Suresh, K.S. Kim, and S. Ramakrishna. 2021. USP48 governs cell cycle progression by regulating the protein level of aurora B. Int J Mol Sci. 22.
    Asai, M., C. Hattori, B. Szabo, N. Sasagawa, K. Maruyama, S. Tanuma, and S. Ishiura. 2003. Putative function of ADAM9, ADAM10, and ADAM17 as APP alpha-secretase. Biochem Biophys Res Commun. 301:231-235.
    Bliss, T.V., B. Lancaster, and H.V. Wheal. 1983. Long-term potentiation in commissural and Schaffer projections to hippocampal CA1 cells: an in vivo study in the rat. J Physiol. 341:617-626.
    Cetkovska, K., H. Sustova, and S. Uldrijan. 2017. Ubiquitin-specific peptidase 48 regulates Mdm2 protein levels independent of its deubiquitinase activity. Sci Rep. 7:43180.
    Chandra, S., M. Jana, and K. Pahan. 2018. Aspirin induces lysosomal biogenesis and attenuates amyloid plaque pathology in a mouse model of Alzheimer's disease via PPARalpha. J Neurosci. 38:6682-6699.
    Chauhan, S., J.G. Goodwin, S. Chauhan, G. Manyam, J. Wang, A.M. Kamat, and D.D. Boyd. 2013. ZKSCAN3 is a master transcriptional repressor of autophagy. Mol Cell. 50:16-28.
    Chen, C.S., W.N. Chen, M. Zhou, S. Arttamangkul, and R.P. Haugland. 2000. Probing the cathepsin D using a BODIPY FL-pepstatin A: applications in fluorescence polarization and microscopy. J Biochem Biophys Methods. 42:137-151.
    Cho, Y.E., Y.J. Kim, S. Lee, and J.H. Park. 2021. NOP53 suppresses autophagy through ZKSCAN3-dependent and -independent pathways. Int J Mol Sci. 22.
    Chua, J.P., S.L. Reddy, D.E. Merry, H. Adachi, M. Katsuno, G. Sobue, D.M. Robins, and A.P. Lieberman. 2014. Transcriptional activation of TFEB/ZKSCAN3 target genes underlies enhanced autophagy in spinobulbar muscular atrophy. Hum Mol Genet. 23:1376-1386.
    Cossec, J.C., C. Marquer, M. Panchal, A.N. Lazar, C. Duyckaerts, and M.C. Potier. 2010a. Cholesterol changes in Alzheimer's disease: methods of analysis and impact on the formation of enlarged endosomes. Biochim Biophys Acta. 1801:839-845.
    Cossec, J.C., A. Simon, C. Marquer, R.X. Moldrich, C. Leterrier, J. Rossier, C. Duyckaerts, Z. Lenkei, and M.C. Potier. 2010b. Clathrin-dependent APP endocytosis and Abeta secretion are highly sensitive to the level of plasma membrane cholesterol. Biochim Biophys Acta. 1801:846-852.
    Dick, L.R., C.R. Moomaw, G.N. DeMartino, and C.A. Slaughter. 1991. Degradation of oxidized insulin B chain by the multiproteinase complex macropain (proteasome). Biochemistry. 30:2725-2734.
    Driscoll, J. 1994. The role of the proteasome in cellular protein degradation. Histol Histopathol. 9:197-202.
    Du, L., Y. Li, M. Kang, M. Feng, Y. Ren, H. Dai, Y. Wang, Y. Wang, and B. Tang. 2021. USP48 is upregulated by Mettl14 to attenuate hepatocellular carcinoma via regulating SIRT6 stabilization. Cancer Res. 81:3822-3834.
    Dunn, W.A., Jr. 1994. Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol. 4:139-143.
    E.H. Koo, S.L.S., D.J. Selkoe, C.H. Koo. 1996. Trafficking of cell-surface amyloid beta-protein precursor I Secretion, endocytosis and recycling as detected by labeled monoclonal antibody. Journal of Cell Science. 109:991-998.
    Edward H. Koo, S.L.S., Dennis J. Selkoe and Catherine H. Koo. 1996. Trafficking of cell-surface amyloid β-protein precursor. Journal of Cell Science. 109:991-998.
    Eric M. Blalock, J.W.G., Kuey Chu Chen, Nada M. Porter, William R. Markesbery, and Philip W. Landfield. 2003. Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. PNAS. 101:2173-2178.
    Farfel-Becker, T., J.C. Roney, X.-T. Cheng, S. Li, S.R. Cuddy, and Z.-H. Sheng. 2019. Neuronal soma-derived degradative lysosomes are continuously delivered to distal axons to maintain local degradation capacity. Cell Reports. 28:51-64.e54.
    Fuentealba, R.A., M.I. Barria, J. Lee, J. Cam, C. Araya, C.A. Escudero, N.C. Inestrosa, F.C. Bronfman, G. Bu, and M.P. Marzolo. 2007. ApoER2 expression increases Abeta production while decreasing Amyloid Precursor Protein (APP) endocytosis: Possible role in the partitioning of APP into lipid rafts and in the regulation of gamma-secretase activity. Mol Neurodegener. 2:14.
    Glaumann, H., J. Ahlberg, A. Berkenstam, M. Falk, and F. Henell. 1985. Protein degradation in the lysosome. Biochem Soc Trans. 13:1010-1012.
    Gonzalez, A.E., V.C. Munoz, V.A. Cavieres, H.A. Bustamante, V.H. Cornejo, Y.C. Januario, I. Gonzalez, C. Hetz, L.L. daSilva, A. Rojas-Fernandez, R.T. Hay, G.A. Mardones, and P.V. Burgos. 2017. Autophagosomes cooperate in the degradation of intracellular C-terminal fragments of the amyloid precursor protein via the MVB/lysosomal pathway. FASEB J. 31:2446-2459.
    Hicks, D.A., N.N. Nalivaeva, and A.J. Turner. 2012. Lipid rafts and Alzheimer's disease: protein-lipid interactions and perturbation of signaling. Front Physiol. 3:189.
    Iyaswamy, A., X. Wang, S. Krishnamoorthi, V. Kaliamoorthy, S.G. Sreenivasmurthy, S.S. Kumar Durairajan, J.X. Song, B.C. Tong, Z. Zhu, C.F. Su, J. Liu, K.H. Cheung, J.H. Lu, J.Q. Tan, H.W. Li, M.S. Wong, and M. Li. 2022. Theranostic F-SLOH mitigates Alzheimer's disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer's disease models. Redox Biol. 51:102280.
    Jiang, Y., Y. Sato, E. Im, M. Berg, M. Bordi, S. Darji, A. Kumar, P.S. Mohan, U. Bandyopadhyay, A. Diaz, A.M. Cuervo, and R.A. Nixon. 2019. Lysosomal dysfunction in down syndrome is APP-dependent and mediated by APP-βCTF (C99). The Journal of Neuroscience. 39:5255-5268.
    Kaneko, M., H. Koike, R. Saito, Y. Kitamura, Y. Okuma, and Y. Nomura. 2010. Loss of HRD1-mediated protein degradation causes amyloid precursor protein accumulation and amyloid-beta generation. J Neurosci. 30:3924-3932.
    Komander, D., M.J. Clague, and S. Urbe. 2009. Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol. 10:550-563.
    Laing, J.G., P.N. Tadros, E.M. Westphale, and E.C. Beyer. 1997. Degradation of connexin43 gap junctions involves both the proteasome and the lysosome. Exp Cell Res. 236:482-492.
    Letronne, F., G. Laumet, A.M. Ayral, J. Chapuis, F. Demiautte, M. Laga, M.E. Vandenberghe, N. Malmanche, F. Leroux, F. Eysert, Y. Sottejeau, L. Chami, A. Flaig, C. Bauer, P. Dourlen, M. Lesaffre, C. Delay, L. Huot, J. Dumont, E. Werkmeister, F. Lafont, T. Mendes, F. Hansmannel, B. Dermaut, B. Deprez, A.S. Herard, M. Dhenain, N. Souedet, F. Pasquier, D. Tulasne, C. Berr, J.J. Hauw, Y. Lemoine, P. Amouyel, D. Mann, R. Deprez, F. Checler, D. Hot, T. Delzescaux, K. Gevaert, and J.C. Lambert. 2016. ADAM30 downregulates APP-linked defects through Cathepsin D activation in Alzheimer's disease. EBioMedicine. 9:278-292.
    Li, S., D. Wang, J. Zhao, N.M. Weathington, D. Shang, and Y. Zhao. 2018. The deubiquitinating enzyme USP48 stabilizes TRAF2 and reduces E-cadherin-mediated adherens junctions. FASEB J. 32:230-242.
    Li, Y., M. Xu, X. Ding, C. Yan, Z. Song, L. Chen, X. Huang, X. Wang, Y. Jian, G. Tang, C. Tang, Y. Di, S. Mu, X. Liu, K. Liu, T. Li, Y. Wang, L. Miao, W. Guo, X. Hao, and C. Yang. 2016. Protein kinase C controls lysosome biogenesis independently of mTORC1. Nat Cell Biol. 18:1065-1077.
    Lockhart, P.J., M. Hulihan, S. Lincoln, J. Hussey, L. Skipper, G. Bisceglio, K. Wilkes, and M.J. Farrer. 2009. Identification of the human ubiquitin specific protease 31 (USP31) gene: structure, sequence and expression analysis. DNA Sequence. 15:9-14.
    Marlow, L., M. Cain, M.A. Pappolla, and K. Sambamurti. 2003. Beta-secretase processing of the Alzheimer's amyloid protein precursor (APP). J Mol Neurosci. 20:233-239.
    Martin-Maestro, P., R. Gargini, A.S. A, E. Garcia, L.C. Anton, S. Noggle, O. Arancio, J. Avila, and V. Garcia-Escudero. 2017. Mitophagy failure in fibroblasts and iPSC-derived neurons of Alzheimer's disease-associated presenilin 1 mutation. Front Mol Neurosci. 10:291.
    Martina, J.A., H.I. Diab, O.A. Brady, and R. Puertollano. 2016. TFEB and TFE3 are novel components of the integrated stress response. EMBO J. 35:479-495.
    Minopoli, G., P. de Candia, A. Bonetti, R. Faraonio, N. Zambrano, and T. Russo. 2001. The beta-amyloid precursor protein functions as a cytosolic anchoring site that prevents Fe65 nuclear translocation. J Biol Chem. 276:6545-6550.
    Nixon, R.A. 2007. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci. 120:4081-4091.
    Nixon, R.A., and D.S. Yang. 2011. Autophagy failure in Alzheimer's disease--locating the primary defect. Neurobiol Dis. 43:38-45.
    Nnah, I.C., B. Wang, C. Saqcena, G.F. Weber, E.M. Bonder, D. Bagley, R. De Cegli, G. Napolitano, D.L. Medina, A. Ballabio, and R. Dobrowolski. 2019. TFEB-driven endocytosis coordinates MTORC1 signaling and autophagy. Autophagy. 15:151-164.
    Palmieri, M., S. Impey, H. Kang, A. di Ronza, C. Pelz, M. Sardiello, and A. Ballabio. 2011. Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet. 20:3852-3866.
    Pan, H., Y. Yan, C. Liu, and T. Finkel. 2017. The role of ZKSCAN3 in the transcriptional regulation of autophagy. Autophagy. 13:1235-1238.
    Pena-Llopis, S., and J. Brugarolas. 2011. TFEB, a novel mTORC1 effector implicated in lysosome biogenesis, endocytosis and autophagy. Cell Cycle. 10:3987-3988.
    Puertollano, R., S.M. Ferguson, J. Brugarolas, and A. Ballabio. 2018. The complex relationship between TFEB transcription factor phosphorylation and subcellular localization. EMBO J. 37.
    Querfurth, H.W., and F.M. LaFerla. 2010. Alzheimer's disease. N Engl J Med. 362:329-344.
    Richter-Ruoff, B., W. Heinemeyer, and D.H. Wolf. 1992. The proteasome/multicatalytic-multifunctional proteinase. In vivo function in the ubiquitin-dependent N-end rule pathway of protein degradation in eukaryotes. FEBS Lett. 302:192-196.
    Sarkari, F., X. Wang, T. Nguyen, and L. Frappier. 2011. The herpesvirus associated ubiquitin specific protease, USP7, is a negative regulator of PML proteins and PML nuclear bodies. PLoS One. 6:e16598.
    Schweitzer, K., and M. Naumann. 2015. CSN-associated USP48 confers stability to nuclear NF-kappaB/RelA by trimming K48-linked Ub-chains. Biochim Biophys Acta. 1853:453-469.
    Settembre, C., R. Zoncu, D.L. Medina, F. Vetrini, S. Erdin, S. Erdin, T. Huynh, M. Ferron, G. Karsenty, M.C. Vellard, V. Facchinetti, D.M. Sabatini, and A. Ballabio. 2012. A lysosome-to-nucleus signaling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31:1095-1108.
    Simeonov, M.I.D.a.A. 2015. Ubiquitin-specific proteases as druggable targets. Drug Target Rev. 2:60-64.
    Singh, A.K., and U. Pati. 2015. CHIP stabilizes amyloid precursor protein via proteasomal degradation and p53-mediated trans-repression of beta-secretase. Aging Cell. 14:595-604.
    Sun, X.X., K.B. Challagundla, and M.S. Dai. 2012. Positive regulation of p53 stability and activity by the deubiquitinating enzyme Otubain 1. EMBO J. 31:576-592.
    Thompson, R. 1981. Rapid forgetting of a spatial habit in rats with hippocampal lesions. Science. 212:959-960.
    Tzimas, C., G. Michailidou, M. Arsenakis, E. Kieff, G. Mosialos, and E.G. Hatzivassiliou. 2006. Human ubiquitin specific protease 31 is a deubiquitinating enzyme implicated in activation of nuclear factor-kappaB. Cell Signal. 18:83-92.
    Uckelmann, M., R.M. Densham, R. Baas, H.H.K. Winterwerp, A. Fish, T.K. Sixma, and J.R. Morris. 2018. USP48 restrains resection by site-specific cleavage of the BRCA1 ubiquitin mark from H2A. Nat Commun. 9:229.
    Wang, B.J., G.M. Her, M.K. Hu, Y.W. Chen, Y.T. Tung, P.Y. Wu, W.M. Hsu, H. Lee, L.W. Jin, S.L. Hwang, R.P. Chen, C.J. Huang, and Y.F. Liao. 2017. ErbB2 regulates autophagic flux to modulate the proteostasis of APP-CTFs in Alzheimer's disease. Proc Natl Acad Sci U S A. 114:E3129-E3138.
    Wang, H., and A.J. Saunders. 2014. The role of ubiquitin-proteasome in the metabolism of amyloid precursor protein (APP): implications for novel therapeutic strategies for Alzheimer's disease. Discov Med. 18:41-50.
    Watanabe, T., Y. Hikichi, A. Willuweit, Y. Shintani, and T. Horiguchi. 2012. FBL2 regulates amyloid precursor protein (APP) metabolism by promoting ubiquitination-dependent APP degradation and inhibition of APP endocytosis. J Neurosci. 32:3352-3365.
    Wu, P.F., N. Bhore, Y.L. Lee, J.Y. Chou, Y.W. Chen, P.Y. Wu, W.M. Hsu, H. Lee, Y.S. Huang, P.J. Lu, and Y.F. Liao. 2020. Phosphatidylinositol-4-phosphate 5-kinase type 1alpha attenuates Abeta production by promoting non-amyloidogenic processing of amyloid precursor protein. FASEB J.
    Xiao, Q., P. Yan, X. Ma, H. Liu, R. Perez, A. Zhu, E. Gonzales, D.L. Tripoli, L. Czerniewski, A. Ballabio, J.R. Cirrito, A. Diwan, and J.M. Lee. 2015. Neuronal-targeted TFEB accelerates lysosomal degradation of APP, reducing Abeta generation and amyloid plaque pathogenesis. J Neurosci. 35:12137-12151.
    Yang, C., C.Z. Cai, J.X. Song, J.Q. Tan, S.S.K. Durairajan, A. Iyaswamy, M.Y. Wu, L.L. Chen, Z. Yue, M. Li, and J.H. Lu. 2017. NRBF2 is involved in the autophagic degradation process of APP-CTFs in Alzheimer disease models. Autophagy. 13:2028-2040.
    Yang, M., B. Virassamy, S.L. Vijayaraj, Y. Lim, K. Saadipour, Y.J. Wang, Y.C. Han, J.H. Zhong, C.R. Morales, and X.F. Zhou. 2013. The intracellular domain of sortilin interacts with amyloid precursor protein and regulates its lysosomal and lipid raft trafficking. PLoS One. 8:e63049.
    Yeates, E.F., and G. Tesco. 2016. The endosome-associated deubiquitinating enzyme USP8 regulates BACE1 enzyme ubiquitination and degradation. J Biol Chem. 291:15753-15766.
    Zhang, M., Y. Deng, Y. Luo, S. Zhang, H. Zou, F. Cai, K. Wada, and W. Song. 2012. Control of BACE1 degradation and APP processing by ubiquitin carboxyl-terminal hydrolase L1. J Neurochem. 120:1129-1138.
    Zhang, P., L. Li, B. Wang, X. Ran, S. Yang, Y. Luo, Y. Li, Z. Wang, Y. Liu, and B. Zhu. 2022a. miR-489-3p promotes malignant progression of non-small cell lung cancer through the inactivation of Wnt/beta-catenin signaling pathway via regulating USP48. Respir Res. 23:93.
    Zhang, W., J. Wang, and C. Yang. 2022b. Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease. Autophagy:1-3.
    Zhang, Z., P. Nadeau, W. Song, D. Donoviel, M. Yuan, A. Bernstein, and B.A. Yankner. 2000. Presenilins are required for gamma-secretase cleavage of beta-APP and transmembrane cleavage of Notch-1. Nat Cell Biol. 2:463-465.
    Zheng, Q., B. Song, G. Li, F. Cai, M. Wu, Y. Zhao, L. Jiang, T. Guo, M. Shen, H. Hou, Y. Zhou, Y. Zhao, A. Di, L. Zhang, F. Zeng, X.F. Zhang, H. Luo, X. Zhang, H. Zhang, Z. Zeng, T.Y. Huang, C. Dong, H. Qing, Y. Zhang, Q. Zhang, X. Wang, Y. Wu, H. Xu, W. Song, and X. Wang. 2022. USP25 inhibition ameliorates Alzheimer's pathology through the regulation of APP processing and Abeta generation. J Clin Invest. 132.
    Zheng, X., W. Lin, Y. Jiang, K. Lu, W. Wei, Q. Huo, S. Cui, X. Yang, M. Li, N. Xu, C. Tang, and J.X. Song. 2021. Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy. 17:3833-3847.
    Zhou, A., K. Lin, S. Zhang, L. Ma, J. Xue, S.A. Morris, K.D. Aldape, and S. Huang. 2017. Gli1-induced deubiquitinase USP48 aids glioblastoma tumorigenesis by stabilizing Gli1. EMBO Rep. 18:1318-1330.

    下載圖示 校內:2024-08-16公開
    校外:2024-08-16公開
    QR CODE