| 研究生: |
李珮慈 Lee, Pei-Tzu |
|---|---|
| 論文名稱: |
以SnO2-core、(Zr+Ti)-shell技術合成Zr.8Sn.2TiO4的反應機制 The mechanisms of formation Zr.8Sn.2TiO4 (ZST) via the core-shell technique in which SnO2 was used as core and Ti-ZrO2 was used as shell |
| 指導教授: |
顏富士
Yen, Fu-Su |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 臉譜技術 、鈦酸錫鋯 |
| 外文關鍵詞: | ZST, core-shell technique |
| 相關次數: | 點閱:147 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用core-shell技術以SnO2為核、Ti-ZrO2為殼合成Zr0.8Sn0.2TiO4 (ZST)微粉。製備方式是先將氯化氧鋯、氯化鈦溶入水中,再加入氨水調整溶液的pH至9,可使Ti及Zr析出於微粒(0.2~0.4μm)SnO2粒體表面形成具有核-殼(core-shell)構造的顆粒。加上不同的熱處理步驟可合成微粒單相的鈦酸錫鋯(ZST,Zr.8Sn.2TiO4)粉末。研究目的在觀察合成ZST粉末的機制。
根據DTA吸放熱峰曲線與XRD繞射分析結果,推測合成ZST的反應途徑有2種:(1)在650℃前後可由微粒或非晶質狀態的含Zr及Ti成份與微粒(< 200nm) SnO2直接反應生成。(2)在溫度超過900℃後主要經先得到ZT (ZrTiO4)結構再以類構造方式Sn進入ZT合成ZST。
由於在650℃後Zr-Ti會開始生成ZrTiO4中間相,並持續至1000℃左右。一旦ZT生成合成ZST的溫度需移至900℃以上,因此若要藉由core-shell技術於低溫合成ZST,必須使用粒徑< 200nm的氧化錫作為core,才有可能在650℃持溫合成ZST。所得ZST粒徑在500nm以下。
Observations of the mechanisms of formation Zr.8Sn.2TiO4 (ZST) via the core-shell technique in which SnO2 was used as core and Ti-ZrO2 was used as shell are the major objective of this study. In this study, ZrOCl2‧8H2O and TiCl4 were dissolved in water and then were precipitated on SnO2 powders via pH-adjusted by the addition of NH4OH solution to prepare ZST starting materials with core-shell structure which were then thermal treated with uvarious temperature and duration to synthesize ZST powders.
According to DTA/TG and XRD analysis, it was found that there could be two reaction routes for synthesizing ZST powders : (1) SnO2 cores with size 200nm in diameter would directly react with amorphous Zr-Ti compounds around 650℃; and (2) exceeding 900℃, Sn ions might diffuse into ZrTiO4 structure by topotatic reaction (TTR).
ZrTiO4 was formed by amorphous Zr-Ti compound would after thermal treated at 650℃ and it kept continuing to 1000℃, so that the synthesizing temperature of ZST powders would exceed 900℃. Therefore it is necessary that the ultra-fine SnO2 powders (<200nm) were used as core and calcined around 650℃ using core-shell technique for synthesizing of Zr.8Sn.2TiO4 (ZST) powders.
1.E. Tillmanns, W. Hofmeister, and W. H. Baur, 〝Crystal Structure of the Microwave Dielectric Resonator Ba2Ti9O20〞, J. Am. Ceram. Soc., 66, 4, 268-271, 1983.
2.G. Wolfram and H. E. Goble, 〝Existence Range, Structural and Dielectric Properties of ZrxTiySnzO4 Ceramics(x+y+z =2)〞, Mat. Res. Bull., 16, 1455-1463, 1981.
3.S. Nishigaki, H. Kato, S. Yano, and R. Kamimura, 〝Microwave Dielectric Properties of (Ba,Sr)O-Sm2O3-TiO2 Ceramics〞, Am. Ceram. Soc. Bull., 66, 9, 1405-1410, 1987.
4.R. Christoffersen, P. K. Davies, and X. H. Wei, 〝Effect of Sn Substitution on Cation Ordering in (Zr1-xSnx)TiO4 Microwave Dielectric Ceramics〞, J. Am. Ceram. Soc., 7, 1441-1450, 1994.
5.K. Wakino, K. Minal, and H. Tamura, 〝Microwave Characteristics of (Zr,Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 Dielectric Resonators〞, J. Am. Ceram. Soc., 67, 278-281, 1984.
6.R. E. Newnham, 〝Crystal Structure of ZrTiO4〞, J. Am. Ceram. Soc., 50, 216, 1967.
7.Young K. Kim and Hyun M. Jang, 〝Lattice Contraction and Cation Ordering of ZrTiO4 in the Normal-to-Incommensurate Phase Transition〞, J. Appl. Phys., 89, 11, 6349-6355, 2001.
8.A. E. Mchale and R. S. Roth, 〝Investigation of the Phase Transition in ZrTiO4 and ZrTiO4-SnO2 Solid Solutions〞, J. Am. Ceram. Soc., 66, c18, 1983.
9.Y. Park and Y. Kim, 〝Order-Disorder Transition of Tin-Modified Zirconium Titanate〞, Mat. Res. Bull., 31, 7-15, 1996.
10.S. X. Zhang, J. B. Li, H. Z. Zhai, and J. H. Dai, 〝Synthesis and Characterization of La2O3/BaO-Doped Microwave Ceramics〞, Ceram. Int., 28, 407-411, 2002.
11.C. L. Huang and M. H. Weng, 〝Liquid Phase Sintering of (Zr,Sn)TiO4 Microwave Dielectric Ceramics〞, Mat. Res. Bull., 35, 1881-1888, 2000.
12.R. Kudesia, A. E. Mchale, and R. L. Snyder, 〝Effects of La2O3/ZnO Additives on Microstructure and Microwave Dielectric Properties of Zr0.8Sn0.2TiO4 Ceramics〞, J. Am. Ceram. Soc., 77, 12, 3215-3220, 1994.
13.K. R. Han, J. W. Jang, S. Y. Cho, D. Y. Jeong, and K. S. Hong, 〝Preparation and Dielectric Properties of Low-Temperature-Sinterable (Zr.8Sn.2)TiO4 Powder〞, J. Am. Ceram. Soc., 81, 5, 1209-1214, 1998.
14.S. I. Hirano, T. Hayashi, and A. Hattori, 〝Chemical Processing and Microwave Characteristics of (Zr,Sn)TiO4 Microwave Dielectrics〞, J. Am. Ceram. Soc., 74, 1320-1324, 1991.
15.D. Houivet, J. El Fallah, and J. M. Haussonne, 〝Phases in La2O3 and NiO Doped (Zr,Sn)TiO4 Microwave Dielectric Ceramics〞, J. Europ. Ceram. Soc., 19, 1095-1099, 1999.
16.Yung Park, Y. H. Kim, and H. G. Kim, 〝The Phase Transition and Microwave Dielectric Properties of Tin Modified Zirconium Titanate by Melting Process〞, Mater. Sci. Eng., B40, 37-41, 1996.
17.O. Muller and R. Roy, The Major Ternary Structure Families, Springer-Verlag, New York, 1974.
18.R. Kudesia, R. L. Snyder, R. A. Condrate, Sr. and A. E. McHale, 〝Structure Study of (Zr.8 Sn.2)TiO4〞, J. Phys. Chem. Solids, 54, 6, 671-684, 1993.
19.卓宛君,以酒石酸鹽法合成奈米微粒Li-Ferrite之機制探討,國立成功大學資源工程研究所碩士論文,2000。
20.劉柏原,以聚合物材料包覆製備模粉之研究,國立清華大學化學工程系所碩士論文,1998。
21.F. A. Selmi and V. R. W. Amarakoon, 〝Sol-gel Coating of Powders for Processing Electronic Ceramics〞, J. Am. Ceram. Soc., 71, 11, 934-937, 1988.
22.Yun-Hui Huang, Chun-Hua Yan, Zhe-Ming, Chun-Sheng Liao, and Guang-Xian Xu, 〝Enhanced Magnetoresistance in La0.7Sr0.3MnO3 / Nd0.7Sr0.3MnO3 Nanocomposites〞, J. Alloys Comp., 349, 224-227, 2003.
23.Duncan J. Shaw, Introduction to Colloid and Surface Chemistry 4th edition, Butterworth-Heinemann, Oxford, 1992.
24.Arundhati Banerjee, T. R. Ramamohan, and M. J. Patni, 〝Smart Technique for Fabrication of Zinc Oxide Varistor〞, Mat. Res. Bulli., 36, 1259-1267, 2001.
25.吳永評,熱水法合成PLZT粉末之生成機構,國立成功大學資源工程研究所碩士論文,1994。