簡易檢索 / 詳目顯示

研究生: 曾立翔
Tseng, Li-Hsiang
論文名稱: 透過添加氧化石墨烯和吸附兩性離子於活性碳電極以增強超級電容器性能
Enhancing Supercapacitor Performance with the Addition of Graphene Oxide and the Adsorption of Zwitterionic Molecules in Activated Carbon Electrodes
指導教授: 溫添進
Wen, Ten-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 67
中文關鍵詞: 氧化石墨烯兩性離子超級電容器高功率密度
外文關鍵詞: Graphene oxide, Zwitterionic molecules, Supercapacitors, High-power density
相關次數: 點閱:109下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在儲能裝置迅速發展下,超級電容器逐漸定位能夠支持快速充放電的高功率密度元件,其中又以電雙層電容器 (Electrostatic double-layer capacitor, EDLC) 更加適合操作於高功率密度下。因此,在本研究中將針對活性碳電極與電解質的介面進行優化,藉此改善離子移動的瓶頸,進一步提升EDLC在高功率密度下的性能表現。
    首先,透過改良漢默法合成氧化石墨烯 (Graphene oxide, GO),並將其作為活性碳電極的添加劑。在電極性質分析中,隨著電極中屬於不良導體的GO比例的上升,電極導電度隨之下降,然而GO表面的氧化官能基團促進了電極介面上鹽類的解離,自由離子的比例隨著GO比例提升而上升。接著組成對稱式超級電容器進行電化學性能測試。在超級電容器阻抗與比電容值等重要性能參數上,隨GO比例上升皆呈現先優化後劣化的趨勢,並且在GO添加比例為5 wt%時為最佳點,說明其在代表離子移動能力的自由離子比例與電極導電度上取得了折衷。而由於這個優勢,使得其在高功率密度的條件下擁有更好的性能,其能量密度上升了約31%。由於GO的添加僅改善了電極與電解質之間介面的離子移動能力,並且隨之而來的是抑制電子的導電度。因此將透過兩性離子的吸附,在不降低電極導電度的條件下,進一步提升離子於介面處以及活性碳孔洞內部的離子移動能力。將兩性離子 ([2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide, SBMA) 吸附於含有5 wt% GO的電極上,並透過吸附時間控制吸附量。在電極表面性質分析,首先證明了吸附量隨吸附時間增長而增多,並且自由離子比例也隨之上升。然而孔洞電極的比表面積隨吸附時間上升而下降。接著組成對稱式超級電容器並進行電化學性能測試。超級電容器的比電容值隨著吸附時間增長而呈現先上升後下降的趨勢,並且在吸附時間為10分鐘時為最佳,說明其在離子移動能力與電極表面積上取的了折衷。而其在高功率密度的條件下相較於僅使用添加GO的超級電容器能量密度提升約10%。
    綜上所述,透過氧化石墨烯及兩性離子分子的修飾,不僅針對電極與電解質之間的介面進行了改善,同時也修飾了活性碳孔洞內部,完整地增進了離子的移動能力。

    Supercapacitors represent a class of energy storage devices situated between batteries and traditional capacitors, characterized by high power density and commendable energy density. The modification of supercapacitor electrode surfaces emerges as a promising approach to significantly enhance their performance under high power density scenarios, thereby elevating their application potential. Graphene oxide (GO), synthesized by modified Hummer’s method, as an additive adds to activated carbon electrodes with varied ratios. The supercapacitor applying the electrodes with 5 wt% GO additive exhibits the best electrochemical performance, which is attributed to a compromise between the free ion ratio and the conductivity. To further improve the performance of supercapacitors, the zwitterionic molecule is adsorbed on the surface of the 5wt% GO-added electrodes with varied adsorption times. The supercapacitor applying the electrode with 10 minutes zwitterionic molecule adsorption exhibits the best electrochemical performance, which is attributed to a compromise between the surface and diffusion capacitance. The supercapacitor with the 5wt% GO-added and 10 minutes of zwitterionic molecule-adsorbed electrode (SC-GO5/Z10) possesses a notable energy density under high power density scenarios, which is 50% higher than pure activated carbon electrode. The added GO enhances the ion movement at the electrode surface. Additionally, the adsorbed zwitterionic molecule further improves the ion movement at the electrode surface and within the pores of activated carbon structures. So far, a comprehensive enhancement in ion movement is achieved along the entire pathway, which significantly improves the supercapacitor performance.

    摘要 I 誌謝 V 目錄 VII 表目錄 X 圖目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 超級電容器 1 1.2.1 超級電容器的介紹 1 1.2.2 超級電容器分類 2 1.2.3 電雙層電容器儲能機制 3 1.3 氧化石墨烯 6 1.3.1 氧化石墨烯的特性與應用 6 1.3.2 氧化石墨烯的合成 7 1.4 兩性離子 8 1.4.1 兩性離子的介紹 8 1.4.2 兩性離子的特性與應用 8 1.5 研究動機 10 第二章 實驗藥品、設備與儀器分析方法 11 2.1 實驗藥品、材料與設備 11 2.1.1 實驗藥品與材料 11 2.1.2 實驗儀器設備 13 2.2 儀器分析 14 2.2.1 X-Ray繞射分析儀 14 2.2.2 X-Ray光電子能譜儀 14 2.2.3 四點探針電阻量測儀 14 2.2.4 表面積及奈米孔徑分析儀 15 2.2.5 拉曼光譜分析儀 15 2.2.6 高解析穿透電子顯微鏡 16 2.2.7 能量分散光譜儀 16 2.2.8 接觸角量測儀 17 2.2.9 傅立葉轉換紅外光譜儀 17 2.2.10 熱重分析儀 17 2.3 電化學分析方法 17 2.3.1 電化學分析系統 17 2.3.2 電化學阻抗分析 18 2.3.3 循環伏安法 19 2.3.4 定電流充放電 20 第三章 氧化石墨烯添加於活性碳電極之超級電容器 21 3.1 實驗目的 21 3.2 實驗流程 21 3.2.1 氧化石墨烯製備 21 3.2.2 兩性離子修飾羧甲基幾丁聚醣薄膜製備 21 3.2.3 電極製備 22 3.2.4 超級電容器組合 23 3.2.5 儀器分析 24 3.3 氧化石墨烯與相關材料分析 26 3.3.1 氧化石墨烯合成鑑定 26 3.3.2 氧化石墨烯性質分析 29 3.3.3 氧化石墨烯與活性碳的物理性質比較 31 3.4 活性碳電極性質分析 32 3.4.1 電極親水性分析 32 3.4.2 電極拉曼光譜分析 33 3.4.3 電極導電性分析 35 3.5 超級電容器電化學性能分析 36 3.5.1 交流阻抗分析 36 3.5.2 循環伏安法分析 39 3.5.3 定電流充放電分析 42 3.5.4 超級電容器之電化學綜合性能表現 44 3.6 小結 46 第四章 兩性離子表面修飾活性碳電極之超級電容器 47 4.1 實驗目的 47 4.2 實驗流程 47 4.2.1 電極表面吸附兩性離子 47 4.2.2 超級電容器組合 47 4.2.3 儀器分析 48 4.3 活性碳電極性質分析 49 4.3.1 電極表面元素分析 49 4.3.2 電極比表面積分析 50 4.3.3 電極拉曼光譜分析 53 4.4 超級電容器電化學性能分析 55 4.4.1 循環伏安法分析 55 4.4.2 定電流充放電分析 57 4.5 小結 60 第五章 結論 61 參考資料 63

    [1] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature materials, vol. 7, no. 11, pp. 845-854, 2008.
    [2] Y. Zhai, Y. Dou, D. Zhao, P. F. Fulvio, R. T. Mayes, and S. Dai, "Carbon materials for chemical capacitive energy storage," Advanced materials, vol. 23, no. 42, pp. 4828-4850, 2011.
    [3] A. Muzaffar, M. B. Ahamed, K. Deshmukh, and J. Thirumalai, "A review on recent advances in hybrid supercapacitors: Design, fabrication and applications," Renewable and sustainable energy reviews, vol. 101, pp. 123-145, 2019.
    [4] C. Choi, D. S. Ashby, D. M. Butts, R. H. DeBlock, Q. Wei, J. Lau, and B. Dunn, "Achieving high energy density and high power density with pseudocapacitive materials," Nature Reviews Materials, vol. 5, no. 1, pp. 5-19, 2019, doi: 10.1038/s41578-019-0142-z.
    [5] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media, 2013.
    [6] H. V. Helmholtz, "Studien über electrische Grenzschichten," Annalen der Physik, vol. 243, no. 7, pp. 337-382, 1879.
    [7] O. Stern, "Zur theorie der elektrolytischen doppelschicht," Zeitschrift für Elektrochemie und angewandte physikalische Chemie, vol. 30, no. 21‐22, pp. 508-516, 1924.
    [8] D. C. Grahame, "The electrical double layer and the theory of electrocapillarity," Chemical reviews, vol. 41, no. 3, pp. 441-501, 1947.
    [9] B. Brodie, "Note sur un nouveau procédé pour la purification et la désagrégation du graphite," Ann. Chim. Phys, vol. 45, pp. 351-353, 1855.
    [10] E. Jaafar, M. Kashif, S. K. Sahari, and Z. Ngaini, "Study on morphological, optical and electrical properties of graphene oxide (GO) and reduced graphene oxide (rGO)," in Materials Science Forum, 2018, vol. 917: Trans Tech Publ, pp. 112-116.
    [11] J. W. Suk, R. D. Piner, J. An, and R. S. Ruoff, "Mechanical properties of monolayer graphene oxide," ACS nano, vol. 4, no. 11, pp. 6557-6564, 2010.
    [12] M. M. Kadam, O. R. Lokare, K. V. Kireeti, V. G. Gaikar, and N. Jha, "Impact of the degree of functionalization of graphene oxide on the electrochemical charge storage property and metal ion adsorption," RSC Advances, vol. 4, no. 107, pp. 62737-62745, 2014.
    [13] S. Kabiri, F. Degryse, D. N. Tran, R. C. da Silva, M. J. McLaughlin, and D. Losic, "Graphene oxide: A new carrier for slow release of plant micronutrients," ACS applied materials & interfaces, vol. 9, no. 49, pp. 43325-43335, 2017.
    [14] G. Folaranmi, M. Bechelany, P. Sistat, M. Cretin, and F. Zaviska, "Comparative Investigation of Activated Carbon Electrode and a Novel Activated Carbon/Graphene Oxide Composite Electrode for an Enhanced Capacitive Deionization," Materials, vol. 13, no. 22, p. 5185, 2020.
    [15] Y. Quan, M. Chen, W. Zhou, Q. Tian, and J. Chen, "High-Performance Anti-freezing Flexible Zn-MnO2 Battery Based on Polyacrylamide/Graphene Oxide/Ethylene Glycol Gel Electrolyte," Front Chem, vol. 8, p. 603, 2020, doi: 10.3389/fchem.2020.00603.
    [16] J. Lee, H.-R. Chae, Y. J. Won, K. Lee, C.-H. Lee, H. H. Lee, I.-C. Kim, and J.-m. Lee, "Graphene oxide nanoplatelets composite membrane with hydrophilic and antifouling properties for wastewater treatment," Journal of membrane science, vol. 448, pp. 223-230, 2013.
    [17] W. Jia, Z. Li, Z. Wu, L. Wang, B. Wu, Y. Wang, Y. Cao, and J. Li, "Graphene oxide as a filler to improve the performance of PAN-LiClO4 flexible solid polymer electrolyte," Solid State Ionics, vol. 315, pp. 7-13, 2018.
    [18] G. Gonçalves, P. A. Marques, A. Barros-Timmons, I. Bdkin, M. K. Singh, N. Emami, and J. Grácio, "Graphene oxide modified with PMMA via ATRP as a reinforcement filler," Journal of Materials Chemistry, vol. 20, no. 44, pp. 9927-9934, 2010.
    [19] W. Xing, H. Li, G. Huang, L.-H. Cai, and J. Wu, "Graphene oxide induced crosslinking and reinforcement of elastomers," Composites Science and Technology, vol. 144, pp. 223-229, 2017.
    [20] X. Yang, L. Zhang, F. Zhang, T. Zhang, Y. Huang, and Y. Chen, "A high-performance all-solid-state supercapacitor with graphene-doped carbon material electrodes and a graphene oxide-doped ion gel electrolyte," Carbon, vol. 72, pp. 381-386, 2014, doi: 10.1016/j.carbon.2014.02.029.
    [21] X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, and Y. Chen, "A High-Performance Graphene Oxide-Doped Ion Gel as Gel Polymer Electrolyte for All-Solid-State Supercapacitor Applications," Advanced Functional Materials, vol. 23, no. 26, pp. 3353-3360, 2013, doi: 10.1002/adfm.201203556.
    [22] W. S. Hummers Jr and R. E. Offeman, "Preparation of graphitic oxide," Journal of the american chemical society, vol. 80, no. 6, pp. 1339-1339, 1958.
    [23] A. M. Dimiev and J. M. Tour, "Mechanism of graphene oxide formation," ACS nano, vol. 8, no. 3, pp. 3060-3068, 2014.
    [24] S. Eigler and A. Hirsch, "Chemistry with graphene and graphene oxide—challenges for synthetic chemists," Angewandte Chemie International Edition, vol. 53, no. 30, pp. 7720-7738, 2014.
    [25] F. Zaccarian, M. B. Baker, and M. J. Webber, "Biomedical uses of sulfobetaine-based zwitterionic materials," Organic Materials, vol. 2, no. 04, pp. 342-357, 2020.
    [26] W. Zhang, Z. Yang, Y. Kaufman, and R. Bernstein, "Surface and anti-fouling properties of a polyampholyte hydrogel grafted onto a polyethersulfone membrane," Journal of colloid and interface science, vol. 517, pp. 155-165, 2018.
    [27] W. Zhang, W. Cheng, E. Ziemann, A. Be’er, X. Lu, M. Elimelech, and R. Bernstein, "Functionalization of ultrafiltration membrane with polyampholyte hydrogel and graphene oxide to achieve dual antifouling and antibacterial properties," Journal of Membrane Science, vol. 565, pp. 293-302, 2018.
    [28] C. Tiyapiboonchaiya, J. M. Pringle, J. Sun, N. Byrne, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, "The zwitterion effect in high-conductivity polyelectrolyte materials," Nature materials, vol. 3, no. 1, pp. 29-32, 2004.
    [29] X. Peng, H. Liu, Q. Yin, J. Wu, P. Chen, G. Zhang, G. Liu, C. Wu, and Y. Xie, "A zwitterionic gel electrolyte for efficient solid-state supercapacitors," Nat Commun, vol. 7, p. 11782, May 26 2016, doi: 10.1038/ncomms11782.
    [30] F. Mo, Z. Chen, G. Liang, D. Wang, Y. Zhao, H. Li, B. Dong, and C. Zhi, "Zwitterionic Sulfobetaine Hydrogel Electrolyte Building Separated Positive/Negative Ion Migration Channels for Aqueous Zn‐MnO2 Batteries with Superior Rate Capabilities," Advanced Energy Materials, vol. 10, no. 16, p. 2000035, 2020.
    [31] W.-C. Li, C.-H. Lin, C.-C. Ho, T.-T. Cheng, P.-H. Wang, and T.-C. Wen, "Superior performances of supercapacitors and lithium-ion batteries with carboxymethyl cellulose bearing zwitterions as binders," Journal of the Taiwan Institute of Chemical Engineers, vol. 133, p. 104263, 2022.
    [32] B. Pal, S. Yang, S. Ramesh, V. Thangadurai, and R. Jose, "Electrolyte selection for supercapacitive devices: a critical review," Nanoscale Advances, vol. 1, no. 10, pp. 3807-3835, 2019.
    [33] Z. Zhai, L. Zhang, T. Du, B. Ren, Y. Xu, S. Wang, J. Miao, and Z. Liu, "A review of carbon materials for supercapacitors," Materials & Design, p. 111017, 2022.
    [34] B. Xu, H. Zhang, H. Mei, and D. Sun, "Recent progress in metal-organic framework-based supercapacitor electrode materials," Coordination Chemistry Reviews, vol. 420, p. 213438, 2020.
    [35] A. Kanwade and P. M. Shirage, "A review on synergy of transition metal oxide nanostructured materials: Effective and coherent choice for supercapacitor electrodes," Journal of Energy Storage, vol. 55, p. 105692, 2022.
    [36] G. Instruments, "Basics of electrochemical impedance spectroscopy," G. Instruments, Complex impedance in Corrosion, pp. 1-30, 2007.
    [37] H. Ng, S. Ramesh, and K. Ramesh, "Exploration on the P (VP-co-VAc) copolymer based gel polymer electrolytes doped with quaternary ammonium iodide salt for DSSC applications: Electrochemical behaviors and photovoltaic performances," Organic Electronics, vol. 22, pp. 132-139, 2015.
    [38] G. A. Mabbott, "An introduction to cyclic voltammetry," Journal of Chemical education, vol. 60, no. 9, p. 697, 1983.
    [39] P. B. Arthi G and L. Bd, "A Simple Approach to Stepwise Synthesis of Graphene Oxide Nanomaterial," Journal of Nanomedicine & Nanotechnology, vol. 06, no. 01, 2015, doi: 10.4172/2157-7439.1000253.
    [40] W.-C. Li, C.-H. Lin, P.-H. Wang, T.-T. Cheng, and T.-C. Wen, "Triple capacitance via the dehydration of saturated water from carboxylated chitosan bearing zwitterion electrolytes," Journal of the Taiwan Institute of Chemical Engineers, vol. 134, p. 104285, 2022.
    [41] G. Vinodha, P. Shima, and L. Cindrella, "Mesoporous magnetite nanoparticle-decorated graphene oxide nanosheets for efficient electrochemical detection of hydrazine," Journal of materials science, vol. 54, pp. 4073-4088, 2019.
    [42] D. Merck KGaA. "IR Spectrum Table & Chart." https://www.sigmaaldrich.com/TW/en/technical-documents/technical-article/analytical-chemistry/photometry-and-reflectometry/ir-spectrum-table (accessed.
    [43] S. Eigler, C. Dotzer, and A. Hirsch, "Visualization of defect densities in reduced graphene oxide," Carbon, vol. 50, no. 10, pp. 3666-3673, 2012.
    [44] N. Díez, A. Śliwak, S. Gryglewicz, B. Grzyb, and G. Gryglewicz, "Enhanced reduction of graphene oxide by high-pressure hydrothermal treatment," Rsc Advances, vol. 5, no. 100, pp. 81831-81837, 2015.
    [45] F. J. Sonia, H. Kalita, M. Aslam, and A. Mukhopadhyay, "Correlations between preparation methods, structural features and electrochemical Li-storage behavior of reduced graphene oxide," Nanoscale, vol. 9, no. 31, pp. 11303-11317, 2017.
    [46] V. R. Moreira, Y. A. R. Lebron, M. M. da Silva, L. V. de Souza Santos, R. S. Jacob, C. K. B. de Vasconcelos, and M. M. Viana, "Graphene oxide in the remediation of norfloxacin from aqueous matrix: simultaneous adsorption and degradation process," Environmental Science and Pollution Research, vol. 27, no. 27, pp. 34513-34528, 2020.
    [47] M. Acik, G. Lee, C. Mattevi, A. Pirkle, R. M. Wallace, M. Chhowalla, K. Cho, and Y. Chabal, "The role of oxygen during thermal reduction of graphene oxide studied by infrared absorption spectroscopy," The Journal of Physical Chemistry C, vol. 115, no. 40, pp. 19761-19781, 2011.
    [48] T. Kuila, A. K. Mishra, P. Khanra, N. H. Kim, and J. H. Lee, "Recent advances in the efficient reduction of graphene oxide and its application as energy storage electrode materials," Nanoscale, vol. 5, no. 1, pp. 52-71, 2013.
    [49] A. Barroso-Bogeat, M. Alexandre-Franco, C. Fernández-González, A. Macías-García, and V. Gómez-Serrano, "Electrical conductivity of activated carbon–metal oxide nanocomposites under compression: a comparison study," Physical Chemistry Chemical Physics, vol. 16, no. 45, pp. 25161-25175, 2014.
    [50] J. Reimer, M. Steele-MacInnis, J. r. M. Wambach, and F. Vogel, "Ion association in hydrothermal sodium sulfate solutions studied by modulated FT-IR-Raman spectroscopy and molecular dynamics," The Journal of Physical Chemistry B, vol. 119, no. 30, pp. 9847-9857, 2015.
    [51] A. S. Gorzalski, C. Donley, and O. Coronell, "Elemental composition of membrane foulant layers using EDS, XPS, and RBS," Journal of Membrane Science, vol. 522, pp. 31-44, 2017.
    [52] S. Maulina, G. Handika, I. Irvan, and A. H. ISWANTO, "Quality comparison of activated carbon produced from oil palm fronds by chemical activation using sodium carbonate versus sodium chloride," Journal of the Korean Wood Science and Technology, vol. 48, no. 4, pp. 503-512, 2020.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE