簡易檢索 / 詳目顯示

研究生: 何念葶
He, Nien-Ting
論文名稱: Sn-xCu系及Sn-0.4Cu-0.3Ni無鉛銲錫合金振動破壞特性之微觀組織效應
Effects of Microstructure on the Vibration Fracture Characteristics of Sn-xCu and Sn-0.4Cu-0.3Ni Lead-Free Solder Alloys
指導教授: 陳立輝
Chen, Li-Hui
呂傳盛
Lui, Truan-Sheng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 無鉛銲錫振動
外文關鍵詞: Sn-Cu, lead-free solder
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銲錫材料可能被使用於振動的環境而造成損害,因此銲錫材料之振動特性有其探討的必要。本研究為探討微觀組織對Sn-xCu(x=0.3, 0.6, 1.3, 1.7wt.%)與Sn-0.4Cu-0.3Ni之振動特性之影響,並與Sn-Pb比較。
    Sn-xCu系合金的微觀組織為樹枝狀初晶β-Sn與散佈的第二相Cu6Sn5。0.3Cu、0.6Cu和1.3Cu有粗大的樹枝狀β-Sn及共晶組織,1.3Cu另有較粗大的棒狀Cu6Sn5,而1.7Cu則整體微細化,包含β-Sn與Cu6Sn5皆較前三者細小。Sn-0.4Cu-0.3Ni的微觀組織包含β-Sn與Cu6Sn5外,還有粗大的Ni-Sn 化合物及微細的Sn-Cu-Ni 化合物散佈。在Sn-37Pb方面,為連續的第二相富鉛相分佈在Sn基地上。
    由相近初始偏移量之共振壽命,可知各組材料之裂縫傳播阻抗能力之優劣,其中以0.3Cu最佳,0.3Ni最差。由等出力值的D-N曲線初始偏移量,可知各組材料之制振性,其中以0.3Cu最佳,37Pb最差。在等出力值條件下,各組材料之共振壽命由高至低依序為:0.6Cu>0.3Cu>0.3Ni>1.7Cu>1.3Cu>37Pb。
    Sn-xCu系合金與Sn-0.4Cu-0.3Ni裂縫起始位置皆為層狀變形,裂縫也是沿著層狀變形傳播,而IMC會對裂縫傳播成阻礙;在Sn-37Pb中,裂縫起始位置則是在富錫相之晶界,而裂縫為沿著富錫相之晶界及富錫相與富鉛相之界面傳播。故在Sn-xCu系及Sn-0.4Cu-0.3Ni合金中,振動變形機制由層狀變形主導;Sn-37Pb合金之振動變形機制則由層狀變形與富錫相之晶界及富錫相與富鉛相之界面所主導。

    The solder may be damaged under the circumstances of mechanical vibration, particularly when the vibrational frequency approaches the resonant frequency of the structure. So it is worthwhile to know the vibration-fracture resistance of the solder during alloy design. The effect of microstructure on the vibration fracture properties is investigated in this study. The aim of this study is to explore the deformation structure and the vibration fracture properties of Sn-xCu (x=0.3, 0.6, 1.3, 1.7wt.%) and Sn-o.4Cu-0.3Ni lead-free solder alloys. A comparison with the traditional Sn-37Pb solder will also be shown in the following.
    The microstructure of the Sn-xCu alloys is composed of the dendritic primary phase β-Sn and the discretely distributed second phase Cu6Sn5. Large dendritic β-Sn is found in Sn-0.3Cu, Sn-0.6Cu and Sn-1.3Cu. The thick bar-shaped Cu6Sn5 is also found in the Sn-1.3Cu. However, the overall microstructure of Sn-1.7Cu become finer during the process, and both the primary phase and the second phase of Sn-1.7Cu are finer than the others. Besides β-Sn and Cu6Sn5, the Ni-Sn compounds and the Sn-Cu-Ni compounds are also found in the Sn-0.4Cu-0.3Ni. The Pb-rich phase is continuously distributed within the Sn-rich matrix of the Sn-37Pb solder.
    Under the condition of constant initial deflection, the better vibration life is related to the better vibration fracture resistance. The result of vibration test performed under the condition of constant initial deflection indicates that the resistance of the Sn-0.3Cu is the best and that of the Sn-37Pb is the worst.
    Under the condition of constant-force, the solder with a higher damping capacity possesses lower initial deflection amplitude. For the results, the damping capacity of the Sn-0.3Cu is the best and that of the Sn-0.4Cu-0.3Ni is the worst. Thus, under the condition of constant force, the specimen’s vibration life in descending order is: Sn-0.6Cu, Sn-0.3Cu, Sn-0.4Cu-0.3Ni, Sn-1.7Cu, and Sn-1.3Cu to Sn-37Pb.
    A layer-like deformation appears at the outset of crack of the Sn-xCu and Sn-0.4Cu-0.3Ni alloys, and the crack propagates along the layer-like deformation. However, the intermetallic compound would impede the crack’s propagation. The vibration crack in the Sn-37Pb solder begins at the grain boundary of rich-Sn phase, and it propagates along the interphase of Sn/Pb grain boundaries and the Sn/Sn grain boundaries. Therefore, in the Sn-xCu and Sn-0.4Cu-0.3Ni lead-free solders, the layer-like deformation dominates the mechanism of vibration deformation. In the Sn-37Pb, the vibration deformation mechanism is dominated by the layer-like deformation, the Sn/Pb interphase boundaries and the Sn/Sn grain boundaries.

    總目錄 中文摘要………………………………………………………………Ⅰ 英文摘要………………………………………………………………Ⅱ 致謝……………………………………………………………………Ⅳ 總目錄…………………………………………………………………Ⅴ 表目錄…………………………………………………………………Ⅶ 圖目錄…………………………………………………………………Ⅷ 第一章 前言……………………………………………………1 第二章 文獻回顧………………………………………………3 2-1 軟銲技術介紹與銲錫材料之無鉛化…………………3 2-2 Sn-Pb系銲錫合金………………………………………3 2-3 Sn-Cu系銲錫合金………………………………………4 2-4 振動性質………………………………………………4 2-4-1 共振頻率………………………………………………4 (a) 共振頻率(resonant frequency)……………………4 (b) 影響共振頻率之因素…………………………………5 2-4-2 阻泥與制振性…………………………………………5 (a) 振動阻泥(damping)……………………………………5 (b) 制振性與偏移量………………………………………6 2-4-3 D-N曲線與共振壽命……………………………………6 2-4-4 銲錫之振動破壞型態…………………………………7 (a) 裂縫傳播行為…………………………………………7 (b) 振動之表面特徵………………………………………7 第三章 實驗方法………………………………………………13 3-1 研究架構…...………………………………………13 3-2 合金配製、澆鑄………………………………………13 3-3 金相觀察及解析………………………………………13 3-4 振動破壞試驗…………………………………………14 3-4-1 試片規格及振動設備…………………………………14 3-4-2 共振頻率………………………………………………14 3-4-3 振動疲勞測試…………………………………………14 3-4-4 裂縫路徑傳播機制……………………………………15 3-5 衝擊破壞試驗…………………………………………15 第四章 實驗結果………………………………………………27 4-1 Sn-xCu合金微觀組織及高應變速率變形破壞………27 4-1-1 微觀組織………………………………………………27 4-1-2 振動特性………………………………………………27 (a) D-N曲線………………………………………………27 (b) 振動後之表面觀察及裂縫解析………………………27 4-1-3 衝擊彎曲變形之組織觀察……………………………28 4-2 Sn-0.4Cu-0.3Ni合金微觀組織及高應變速率變形破壞……28 4-2-1 微觀組織………………………………………………28 4-2-2 振動特性………………………………………………28 (a) D-N曲線…………………………………………………28 (b) 振動後之表面觀察及裂縫解析…………………………28 4-2-3 衝擊彎曲變形之組織觀察………………………………28 4-3 Sn-37Pb合金微觀組織及高應變速率變形破壞………………29 4-3-1 微觀組織…………………………………………………29 4-3-2 振動特性…………………………………………………29 (a) D-N曲線…………………………………………………29 (b) 振動後之表面觀察及裂縫解析………………………29 4-4 Sn-xCu、Sn-0.4Cu-0.3Ni與Sn-37Pb之共振壽命……………29 第五章 討論..........................................57 5-1 振動特性…………………………………………………57 5-1-1 裂縫傳播阻抗……………………………………………57 5-1-2 制振性……………………………………………………57 5-1-3 共振壽命…………………………………………………58 5-2 微觀組織對裂縫起始與傳播之影響……………………59 5-2-1 起始位置…………………………………………………59 5-2-2 裂縫傳播…………………………………………………59 第六章 結論………………………………………………………61 參考資料……………………………………………………………62 表目錄 表 3-1 各組實驗材料之分光分析結果(wt.%)…………………………17 表 3-2 實驗材料試片之澆鑄條件………………………………………18 表 4-1 各組合金在固定出力值3.5G時之共振頻率……………………31 圖目錄 圖 2-1 Sn-Pb二元相圖…………………………………………………8 圖 2-2 Sn-Cu二元相圖…………………………………………………9 圖 2-3 Sn-Ni二元相圖…………………………………………………10 圖 2-4 懸臂樑加末端荷重的振動系統…………………………………11 圖 2-5 末端偏移量vs.振動次數(D-N曲線)……………………………12 圖 3-1 研究架構…………………………………………………………19 圖 3-2 Y型石墨模尺寸規格:(a) 振動試片Y型模;(b) 衝擊試片Y型模(虛線部分為試片取樣位置;單位: mm)……………………20 圖 3-3 振動試片尺寸規格及夾持方式(單位: mm)…………………21 圖 3-4 振動測試裝置……………………………………………………22 圖 3-5 試片末端偏移量隨低頻掃描至高頻之變化……………………23 圖 3-6 裂縫量測示意圖......................................24 圖 3-7 衝擊試片尺寸規格(單位: mm)………………………………25 圖 3-8 衝擊試驗示意圖…………………………………………………26 圖 4-1 Sn-xCu合金x-ray分析…………………………………………32 圖 4-2 Sn-xCu合金之OM觀察:(a) 0.3Cu;(b) 0.6Cu;(c) 1.3Cu; (d) 1.7Cu……………………………………………………………33 圖 4-3 Sn-xCu合金在固定出力值3.5G下之D-N曲線…………………34 圖 4-4 Sn-xCu合金在相近初始偏移量(1.4mm)下之D-N曲線………35 圖 4-5 Sn-xCu合金振動初期SEM觀察(出力值:3.5G):(a) 0.3Cu; (b) 0.6Cu;(c) 1.3Cu;(d) 1.7Cu…………………………………36 圖 4-6 Sn-xCu合金裂縫傳播SEM觀察(出力值:3.5G):(a) 0.3Cu; (b) 0.6Cu;(c) 1.3Cu;(d) 1.7Cu…………………………………37 圖 4-7 Sn-1.7Cu合金SEM觀察,裂縫沿著Cu6Sn5與基地相之界面行進(出力值:3.5G)……………………………………………………38 圖 4-8 Sn-1.3Cu合金經衝擊後試片之SEM觀察……………………39 圖 4-9 Sn-0.4Cu-0.3Ni微觀組織之觀察:(a) OM;(b) SEM觀察..............40 圖 4-10 Sn-0.4Cu-0.3Ni EDS元素分析:(a)Ni-Sn化合物;(b)Sn-Cu-Ni化合物…………………………………………………………….41 圖 4-11 Sn-0.4Cu-0.3Ni在固定出力值3.5G下的D-N曲線……………42 圖 4-12 Sn-0.4Cu-0.3Ni振動初期SEM觀察(出力值:3.5G)………43 圖 4-13 Sn-0.4Cu-0.3Ni裂縫傳播SEM觀察(出力值:3.5G)……44 圖 4-14 Sn-0.4Cu-0.3Ni試片衝擊後之SEM觀察………………………45 圖 4-15 Sn-37Pb經安定化處理之OM觀察……………………………46 圖 4-16 Sn-37Pb在固定出力值3.5G下的D-N曲線…………………47 圖 4-17 Sn-37Pb振動初期SEM觀察,箭頭指向微裂縫 (出力值:3.5G)…………………………………………………48 圖 4-18 Sn-37Pb振動表面裂縫之SEM觀察(出力值:3.5G)………49 圖 4-19 Sn-37Pb裂縫傳播SEM觀察(出力值:3.5G)………………50 圖 4-20 Sn-0.3Cu:(a) D-N曲線;(b) D-N曲線各階段所測得之共振頻率(出力值3.5G)…………………………………………………51 圖 4-21 Sn-0.4Cu-0.3Ni:(a) D-N曲線;(b) D-N曲線各階段所測得之共振頻率(出力值3.5G)…………………………………………52 圖 4-22 等出力值下(3.5G),各組合金之D-N曲線(由圖4-3、4-11和4-16合成)…………………………………………………53 圖 4-23 相近初始偏移量(1.4mm)下,各組合金之D-N曲線……………54 圖 4-24 等出力值(3.5G)時,各組材料之共振壽命…………………55 圖 4-25 相近起始偏移量(1.4mm)時,各組材料之共振壽命………56 圖 5-1 振動試片凹槽區域巨觀觀察,由上至下依序為:0.6Cu、0.3Ni及37Pb;虛線圈選處為試片notch區間(出力值:3.5G)………60

    1.張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,第12期,17-18頁,民國84 年。
    2.M. T. Jann and A. R. Saavedra, “Fatigue and Tensile Properties of a Newly Developed Tin-Copper Alloy”, J. Mater. Sci. Letters (UK). Vol. 11, no. 23, pp. 1596-1598. 1 Dec. 1992.
    3.T. C. Chang, M. C. Wang and M. H. Hon, “Morphology and Adhesion Strength of the Sn-9Zn-3.5Ag/Cu Interface after Aging”, J. Crystal Growth, Vol. 263 pp. 223-231, 2004.
    4.Y. S. Kim, K. S. Kim, C. W. Hwang and K. Suganuma, “Effect of Composition and Cooling Rate on Microstructure and Tensile Properties of Sn-Zn-Bi alloys”, J. Alloys Comp. Vol. 352 pp. 237-245, 2003.
    5.D. Q. Yu, H. P. Xie and L. Wang, “Investigation of Interfacial Microstructure and Wetting Property of Newly Developed Sn-Zn-Cu Soders with Cu Substrate”, J. Alloys Comp. Vol. 385 pp. 119-125, 2004.
    6.Q. J. Yang, H. L. J. Pang, Z. P. Wang, G. H. Lim, F. F. Yap and R. M. Lin, “Vibration Reliability Characterization of PBGA Assemblies”, Microelectronic Reliability 40, pp. 1097-1107, 2000.
    7.S. M. McGuire, M. E. Fine, O. Buck and J. D. Achenbach, “Nondestructive Detection of Fatigue Cracks in PM 304 Stainless Steel by Internal Friction and Elasticity”, J. Mater. Res., Vol. 8, pp. 2216-2223, 1993.
    8.S. M. McGuire, M. E. Fine and J. D. Achenbach, “Crack Detection by Resonant Frequency Measurements”, Metal. Trans. A, Vol. 26A, pp. 1123-1127, 1995.
    9.Clifford L. Barber,“銲錫:基本與應用”,協志工業叢書.38,1-2頁,民國74年。
    10.W. J. Plumbridge, “Review Solders in Electronic”, J. Mater. Sci., Vol. 31, pp. 2501-2514, 1996.
    11.Boyer and T. L. Gall, Metal Handbook, ASM, Desk Edition, Chap. 30, pp. 73-76, 1985.
    12.S. Vaynman and M. E. Fine, “Development of Fluxes for Lead-Free Solders Containing Zinc”, Scripta Materialia, Vol. 41, No. 12, pp. 1269-1271, 1999.
    13.M. McCormack, S. Jin and G. W. Kammlott, "Suppression of Microstructural Coarsening and Creep Deformation in a Lead-Free Solder", American Institute of Physics, Vol. 64, pp.580-582, 1994.
    14.P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing Solders”, JOM, Vol. 45, No. 7, pp.14-19, July 1993.
    15.I. Larky and W. T. Thompson, “The Pb-Sn System”, Bulletin of Alloy Phase Diagrams, Vol. 9, pp. 142-152, 1998.
    16.S. K. Kang and T. G. Ference, “Nickel-alloyed Tin-lead Eutectic Solder for Surface Mount Technology”, J. Mater. Res., Vol. 8, pp. 1033-1040, 1993.
    17.T. G. Langdon and R. C. Gifkins, “Cyclic Grain Boundary Migration during High Temperature Fatigue-I. Microstructure Observations”, Acta Metall., Vol. 31, pp. 727-938, 1983.
    18.T. G. Langdon, D. Simpson and R. C. Gifkins, “Cyclic Grain Boundary Migration during High Temperature Fatigue-II. Measurement of Grain Boundary Sliding”, Acta Metall., Vol. 31, pp. 739-946, 1983.
    19.N. Saunders and A. P. Miodownik, “Ag-Sn Binary Alloy Diagrams”, ASM Handbook, Vol. 3, pp. 2, 179, 1992.
    20.K. S. Bae and S. J. Kim, “Microstructure and Adhesion Properties of Sn-0.7Cu/Cu Solder Joints”, J. Mater. Res. Vol. 17, No. 4, pp. 743-746, 2002.
    21.K. Suganuma, “Advance in Lead-Free Electrons Soldering”, Curr. Opin. Solid State Mater. Sci. Vol. 5, pp. 55-64, 2001.
    22.K. Suganuma, ESPEC Technology Report No. 13, 2002.
    http://www.espec.co.jp/english/env-test/tech-report/tech-report.html
    23.http://www.nihonsuperior.co.jp/leadfree.htm.
    24.Nishimura, Tetsuro, Nihon Superior Sha CO., LTD., Leadless Solder, Patent Number WO9948639.
    25.Taylor Lyman, Metals handbook, ASM, 8th ed., Vol. 8, pp. 325, 1973.
    26.S. S. Rao, “Mechanical Vibrations”, Addison-Wesley Publishing Company, Inc., 2nd ed., pp.4-160, 1990.
    27.C. Y. Tang, M. Jie, W. Shen and K. C. Yung, “The Degradation of Elastic Properties of Aluminum Alloy 2024T3 Due to Strain Damage”, Scripta Metall. Mater., Vol. 38, No. 2, pp. 221-238, 1998.
    28.孫慶鴻、張啟軍、姚慧珠編著,振動與噪音的阻尼控制,機械工業出版社,北京, 38-57頁,民國81年。
    29.A. Granato and K. Lucke, “Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies”, J. Appl. Phys., Vol. 27, pp. 583-593, 1956.
    30.S. E. Urreta De Pereyre, A. A. Ghilarducci De Salva and F. Louchet, “Precipitation Internal Friction Peak in Al-Mg-Si”, Phys. Stat. Sol., Vol. 139, pp.345-360, 1993.
    31.J. Zhang, R. J. Perez and E. J. Lavernia, “Documentation of Damping Capacity of Metallic, Ceramic and Metal-Matrix Composite Materials”, J. Mater. Sci., Vol.28, pp. 2395-2404, 1993.
    32.R. J. Perez, J. Zhang, M. N. Gungor and E. J. Lavernia, “Damping Behavior of 6061Al/Gr Metal Matrix Composites”, Metall. Trans., Vol. 24A, pp. 701-711, 1993.
    33.E. J. Lavernia, R. J. Perez and J. Zhang, “Damping Behavior of Discontinuously Reinforced Al Alloy Metal-Matrix Composites”, Metall. Mater. Trans., Vol. 26A, pp. 2803-2818, 1995.
    34.M. Okabe, T. Mori and T. Mura, “Internal Friction Caused by Diffusion Around a Second-Phase Particle Al-Si Alloy”, Phil. Mag. A, Vol. 44, pp. 1-12, 1981.
    35.A. Wolfenden, L. S. Cook and J. M. Wolla, “Phase Changes and Damping in Crystalline Materials”, M3D: Mechanics and Mechanism of Material Damping, ASTM STP 1169, V. K. Kinra and A. Wolfenden, Eds., American Society for Testing and Materials Philadelpgia, pp. 124-141, 1992.
    36.C.M. Chuang, T.S. Lui and L.H. Chen, “Effect of Lead Content on Vibration Fracture Behavior of Pb-Sn Eutectic Solder”, J. Mater. Res. Vol. 16, pp. 2644-2652, 2001.
    37.莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    38.J. M. Song, T. S. Lui, L. H. Chan and D. Y. Tsai, “Resonant Vibration Behavior of Lead-Free Solders”, J. Electron. Mater., Vol. 32, No. 12, pp. 1501-1508, 2003.
    39.洪佳和,“亞共晶鋁-矽(-鎂)合金之共振破壞特性及其冶金影響因素之探討”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    40.李芳儀,“銅含量對Sn-Ag-Cu無鉛銲錫振動破壞特性之研究”,國立成功大學材料科學及工程學系,碩士論文,民國92年。
    41.藍國峰,“Sn-Zn-xAg無鉛銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,碩士論文,民國91年。
    42.D. Taylor, “Fatigue Threshold”, Butterworth and Co. Ltd, pp. 71-91, 1989.
    43.S. Suresh and Gerberich, “Fatigue of Materials”, Appl. Mech. Rev., Vol.45, pp. 291-292, 1992.
    44.S. Suresh, “Crack Deflection: Implication for the Growth of Long and Short Fatigue Cracks”, Metall. Trans., Vol. 14A, pp. 2375-2385, 1983.
    45.William D. Callister, Jr., “Material Science and Engineering : an Introduction”, 5th ed., pp. 204-209, 2000.

    下載圖示 校內:2007-07-27公開
    校外:2007-07-27公開
    QR CODE