| 研究生: |
張亞蕾 Chang, Ya-Lei |
|---|---|
| 論文名稱: |
平面人造結構在兆赫波頻段之光學特性研究以及分子感測應用 Characterization of planar artificial material in terahertz frequency range and application in molecular sensing |
| 指導教授: |
呂佳諭
Lu, Ja-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 兆赫波感測 、金屬週期結構 、兆赫波頻譜 |
| 外文關鍵詞: | terahertz wave sensing, periodical metla structure, terahertz spectroscopy |
| 相關次數: | 點閱:57 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
兆赫波具有比紅外光低的光子能量,可與分子間作用力匹配,兆赫波感測技術則是具潛力且尚未發展完整的一項光學感測方法,其中又以微量分子感測最具挑戰性,以目前兆赫波時域頻譜系統而言,樣品重量至少達數百個微克才能辨識,或是樣品厚度與兆赫波的作用長度太短等限制,為解決此問題,此論文發展一種新型複合式的兆赫電漿人造結構,並實現其穿透消逝波在近場之微量感測技術。此複合式電漿人造結構是整合奈米導電層於立體網狀介質基板而成,與電漿波導、平面金屬孔洞電漿結構相比較,此奈米導電層可以高效率地調變週期結構的表面兆赫波,展現極明顯的頻譜特徵於穿透率峰值-低值頻率。此研究也指出,該頻譜低值頻率與孔洞寬與導電率相關,其中孔洞寬度90 m與單面鋁金屬層之導電率達到0.1 MS/cm等條件,具備光學感測應用的價值,尤其可以克服目前兆赫波在微量感測方面的窘境,此論文在微量感測原理方面也成功展示:分析模型、模型驗證、模型使用方法、以及待測樣品條件等,預估此感測結果在厚度與折射率之精準度可以分別低於10 %與2 %。
Terahertz photonic energy is considerably lower than that of infrared ray, approximately matching to the energy of intermolecular force. Terahertz wave sensing technology is one potential optical sensing method but not explored yet. Especially, the sening performance of minute smaple is difficult to achieve based on terahertz time-domain spectroscopy because the detectable sample amounts should be sufficient with several hundreds of micrograms or thicknesses approximating terashertz wavelength. The research experimentally resolves the limitation of THz wave sensing on minute samples based on one hybrid plasmonic structure. The hybrid terahertz plasmonic structure constructed by one conductive layer with nanometers of thickness on a dielectric mesh substrate. In contrast to terahertz plasmonic waveguides and plasmonic structures of metal-hole-array, such the hybrid plasmonic structure efficiently modulates terahertz surface waves on the metal structures with distinctly high visibility between spectral peaks and dips. The research results express that those spectral dips correlate to the structural pore widths and surface conductivity, and the critical paramters are derived in the experiments, including the mesh pore width of 90 m, metal coating of aluminum metal layer with single-side integration, and the conductivity higher than 0.1 MS/cm. The aluminum mesh layer thus works as one useful optical sensor and overcomes the restriction of minute sening in THz frequency region. The minue sening performance is presented based on the evanescent wave sensing model and discussed in the definition, experimental confirmation and opearation method of the model, which successfully approaches the detection precision about 10 % and 2 %, respectively, on the thickness and refractive index.
[1-1]H. E. W. Francis, and A. Jenkins, “Fundamentals of Optics,” McGraw-Hill International Editions 4th ed p.234 (2001)
[1-2]A. G. Davies, E. H. Linfield, and M. B. Johnston, “The development of terahertz sources and their applications,” Phy. Med. Biol. 47, 3679 (2002).
[1-3]T. Hasebe, Y. Yamada, and H. Tabata, “Label-free THz sensing of living body-related molecular binding using a metallic mesh,” Bicchem. BiophI. Res. Co. 414, 192 (2011)
[1-4]P. H. Siegel, “Terahertz Technology in Biology and Medicine,” IEEE T. Microw. Theory 52, 2438 (2004)
[1-5]H. B. Liu, H. Zhong, N. Kapowicz, Y. Chen, and X. C. Zhang, “Terahertz Spectroscopy and Imaging for Defense and Security Aplications,” P. IEEE 95, 1514-1515 (2007)
[1-6]M. V. Exter, Ch. Fattinger, and D. Grischkowsky, “Terahertz time-domain spectroscopy of water vapor,” Opt. Lett. 14, 1128-1130 (1989).
[1-7]W. Withayachumnankul, J. F. O'Hara, W. Cao, I. A.-Naib, and W. Zhang, “Limitation in thin-film sensing with transmission-mode terahertz time-domain spectroscopy,” Opt. Express 22, 972-986 (2014).
[1-8]S. Schecklman, L. M. Zurk, S. Henry, and G. P. Kniffin, “Terahertz material detection from diffuse surface scattering,” J. Appl. Phys. 109, 094902 (2011).
[1-9]T. Kurihara, K. Yamaguchi, H. Watanabe, M. Nakajima, and T. Suemoto, “Dielectric probe for scattering-type terahertz scanning near-field optical microscopy,” Appl. Phys. Lett. 103, 151105 (2013).
[1-10]J. T. Kindt and C. A. Schmuttenmaer, “Far-Infrared Dielectric Properties of Polar Liquids Probed by Femtosecond Terahertz Pulse Spectroscopy,” J. Phy. Chem. 100, 10373-10379 (1996).
[1-11]J. L.-Hughes, T.-I. Jeon, “A review of the terahertz conductivity of bulk and nano-materials,” J. Infrared Millim. Te. 33, 871-925 (2012).
[2-1]E. Hecht, “OPTICS,” Addison Wesley, U.S.A, pp. 389 , 456 and 352
[2-2]J. W. Lee, T. H. Park, Peter Nordlander, and D. M. Mittleman, “Terahertz transmission properties of an individual slit in a thin metallic plate,” Opt. Express 17, 12660-12667 (2009)
[2-3]M. Razanoelina, R. Kinjo, K. Takayama, I. Kawayama, H. Murakami, D. M. Mittleman, M. Tonouchi, “Parallel-Plate Waveguide Terahertz Time Domain Spectroscopy for Ultrathin Conductive Films,” J. Infrared Millim. Te. 36, 1182–1194 (2015)
[2-4]J. W. He, X. K. Wang, Z. W. Xie, Y. Z. Xue, S. Wang and Y. Zhang, “Reconfigurable terahertz grating with enhanced transmission of TE polarized light,” APL Photonics 2, 076102 (2017)
[2-5]F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742-2744 (2004)
[3-1]B. L. Deopura, R. Alagirusamy, M. Joshi, and B. Gupta, “Polyesters and polyamides,” ElSEVIER SCIENCE & TECHNOLOGY, Cambridge United Kingdom, p.12 (2008)
[3-2]M.Gorjanc, M. Mizetic, G. Primc, A. Vesel, K. Spasic, N. Puac, Z. L. Petrovic, and M. Kert, “Plasma treated polyethylene terephthalate for increased embedment of UV-responsive microcapsules,” Appl. Surf. Sci. 419, 224 (2017)
[3-3]A. K. van der Veg, L. E. Govaert, “Polymeren:van keten tot kunststof,” VSSD Dutch pp.84 (2005)
[3-4]王建義, “薄膜工程學,” 全華圖書,台灣, p.40 (2014)
[3-5]A. K. Azad, J. F. O’Hara, R. Singh, H. T. Chen, and A. J. Taylor, “A Review of Terahertz Plasmonics in Subwavelength Holes on Conducting Films,” IEEE J. Sel. Top. Quant. 19, 8400416-8400416 (2013)
[3-6]F. Miyamaru and M. Hangyo, “Finite size effect of transmission property for metal hole arrays in subterahertz region,” Appl. Phys. Lett. 84, 2742-2744 (2004)
[3-7]H. Cao and A. Nahata, “Resonantly enhanced transmission of terahertz radiation through a periodic array of subwavelength apertures,” Opt. Express 12, 1004-1010 (2004)
[3-8]C. Sabah, M. D. Thomson, F. Meng, S. Tzanova, and H. G. Roskos, “Terahertz propagation properties of free-standing woven-steel-mesh metamaterials:Pass-bands and signatures of abnormal group velocities,” J. Appl. Phys. 110, 064902 (2011)
[3-9]H. Yoshida, Y. Ogawa, Y. Kawai, S. Hayashi, A. Hayashi, C. Otani, E. Kato, F. Miyamaru, and K. Kawase, “Terahertz sensing method for protein detection using a thin metallic mesh,” Appl. Phys. Lett. 91, 253901 (2007)
[3-10]D. Qu, D. Grischkowsky, and W. Zhang, “Terahertz transmission properties of thin, subwavelength metallic hole arrays,” Opt. Lett. 29, 896-898 (2004)
[4-1]J. E. Elliott, M. Macdonald, J. Nie, and C. N. Bowman, “Structure and swelling of poly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure,” Polymer 45, 1503–1504 (2004)
[4-2]S. Kobayashi, and K. Müllen, “Encyclopedia of Polymeric Nanomaterials,” Springer-Verlag Berlin Heidelberg pp.2091-2092,1881-1882 (2014)
[4-3]J. J. B. Machado, J. A. Coutinho, and E. A. Macedo, “Solid-liquid equilibrium of α-lactose in ethanol/water,” Fluid Phase Equilibr. 173, 126 (2000)
[4-4]B. Born, and M. Havenith, “Terahertz Dance of Proteins and Sugars with Water,” J. Infrared Millim. Te. 30, 1245–1254 (2009)
[4-5]K. Yamamoto, M. Yamaguchi, M. Tani, and M. Hangyo, “Degradation diagnosis of ultra-high-molecular weight polyethylene (UHMWPE) by terahertz-time-domain spectroscopy,” Appl. Phys. Lett. 85, 5194-5196 (2004)
[5-1]D. J. Park, J. T. Hong, J. K. Park, S. B. Choi, B. H. Son, F. Rotermund, S. Lee, K. J. Ahn, D. S. Kim, and Y. H. Ahn, “Resonant transmission of terahertz waves through metallic slot antennas on various dielectric substrates,” Curr. Appl. Phys. 13, 753-757 (2013)
[5-2]S. J. Park, S. A. N. Yoon and Y. H. Ahn, “Dielectric constant measurements of thin films and liquids using terahertz metamaterials,” RSC Adv., 6, PP.69381–69386 (2016)
[5-3]D.J. Park, S.J. Park, I. Park, Y.H. Ahn, “Dielectric substrate effect on the metamaterial resonances in terahertz frequency range,” Curr. Appl. Phys. 14, 570–574 (2014)
[5-4]Woo-Gi Yi, “Terahertz Spectroscopic Characterization and Imaging for Biomedical Applications,” The Ohin Syate University USA p.38 (2015)
[6-1]B. You, J. Lu, T Liu, and J. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21, 20187-21096 (2013)
[6-2]W. Withayachumnankul, H. Lin, K. Serita, C. M. Shah, M. Bhaskaran, M. Tonouchi, C. Fumeaux, and D. Abbott, “Sub-diffaction thin film sensing with planar terahertz metamaterials,” Opt. Express 20, 3345-3352
[6-3]B. You, C. C. Peng, J. S. Jhang, H. H. Chen, C. P. Yu, W. C. Lai, T. A. Liu, J. L.Peng, and J. Y. Lu, ” Terahertz plasmonic waveguide based on metal rod arrays for nanofilm sensing,” Opt. Express 22, 11340-11350 (2014)
[6-4]B. You, J. Lu, C. P. Yu, T. A. Liu, and J. L. Peng, “Terahertz refractive index sensors using delectric pipe wavaguides, ” Opt. Express 20, 5858-5866 (2012)
[6-5]X. Xu, B. Peng, D. Li, J. Zhang, L. M. Wong, Q. Zhang, S. Wang, and Q. Xiong, “Flexible Visible-Infrared Metamaterials and Their Applications in Highly Sensitive Chemical and Biological Sensing,” Nano Lett. 11, 3232–3238 (2011)
[6-6]T. Chen, S. Li, and H. Sun, “Metamaterials Application in Sensing,” Sensor-Basel 12, 2749 (2012)