| 研究生: |
林松義 Lin, Song-Yih |
|---|---|
| 論文名稱: |
應用混合微分轉換/有限差分法分析非傅立葉生物熱傳問題 Application of Differential Transformation / Finite Difference Method to Non-Fourier Bioheat Transfer Problems |
| 指導教授: |
陳朝光
Chen, Cha’o-Kuang 賴新一 Lai, Hsin-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 143 |
| 中文關鍵詞: | 微分轉換 、非傅立葉生物熱傳 、鬆弛時間 、熱治療 |
| 外文關鍵詞: | differential transformation, non-Fourier bioheat transfer, relaxation time, hyperthermia |
| 相關次數: | 點閱:149 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究應用微分轉換混合有限差分法分析生物非傅立葉熱傳問題。有別其它積分轉換法,微分轉換法是依據泰勒展開式為基礎的函數轉換方法,能以系統化的處理程序,將線性及非線性微分方程式轉換為代數方程進行迭代求解,具有廣泛的應用及快速收斂的特性。
在文中首先介紹微分轉換理論的基本定義、性質及演算方法,接著探討此法混合有限差分法在各種生物非傅立葉熱傳問題上的應用。研究包含單層及雙層生物組織非傅立葉熱傳問題,考慮在定熱通量、定溫及溫度隨時間遞減等邊界條件,與熱源為高斯函數分佈及二次函數分佈情況時,討論並比較熱波模型生物熱傳方程式和Pennes熱傳方程式之熱響應,研究其中鬆弛時間、熱傳導係數、熱波傳遞速度、血液流動率、熱量分佈最大強度、磁性微粒擴散參數與二次函數熱源項等,對溫度分佈影響。
由研究結果發現,傅立葉熱傳定律的熱波具有非常大的傳遞速度,其溫度分佈為平滑連續曲線。非傅立葉熱傳定律之熱波理論,由於鬆弛時間之效應,造成熱以類似波的形式傳遞,其傳遞速度為一有限值。熱傳導係數與熱波傳遞速度成正比,故當熱傳導係數值越大則熱波傳遞越快。血液流動率越大,溫度下降的幅度也就越大,但熱波傳遞速度不受影響。由數值結果發現在腫瘤組織與正常組織交界處之溫度分佈,沒有振盪的現象發生,內部熱源的加熱方式,不會影響熱波傳遞速度。
In this research, the hybrid method which combines differential transformation and finite difference approximation techniques was employed to analyze non-Fourier bioheat transfer problems. Unlike other integral transform methods, differential transformation method is a transfer function that is based on the Taylor expansion serious; it converts linear and non-linear differential equations into a form of algebraic equations by constructing systematic processing program and iterate to find the solutions. Therefore, differential transformation method has a wide range of allocations and rapid convergence characteristics.
The basic definitions and properties of the differential transformation method were introduced briefly and the applications of this method combined with finite difference method on the non-Fourier bioheat transfer conduction problems were displayed later. This paper use the hybrid method to investigate the non-Fourier bioheat transfer conduction problems on single and double layers of living tissues including the boundary condition of constant heat flux, constant temperature and temperature decay function. It also analyzes the heat source term by Gaussian function and quadric spatial variation distribution. The effects of thermal wave model and Pennes model are employed and compared. The influences on temperature distribution by relaxation time, thermal conductivity, thermal wave propagation speed, perfusion rate of blood, the maximum strength of the spatial heating source, the parameter of diffusion by magnetic particles and quadric spatial variation heat source are studied and analyzed. When the blood perfusion rate is lager then the temperature decreases, but the thermal wave propagation speed is not affected.
The study results show that the thermal wave propagation speed is infinite in Fourier conduction law and the tempertaure distribution is continuous. For the influence of relaxation time, the propagation speed of thermal wave is finite and has a behavior like wave in thermal wave model of bioheat transfer. Proportional to the thermal conductivity and thermal wave velocity, so when the heat conduction coefficient values larger heat wave passes the faster. The numerical results are found that the transient temperature will not oscillate in the interface of tumor tissue and normal tissue. The type of internal heat source will not affect the thermal wave propagation speed.
Arkin, H., Xu, L.X., Holmes, K.R., Recent developments in modeling heat transfer in blood perfused tissues, IEEE Trans. Biomed. Engrg. Vol.41, pp.97–107, 1994.
Andrä, W., d’Ambly, C.G., Hergt, R., Hilger, I., Kaiser , W. A., Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia, J. Magnetism and Magnetic Materials, vol.194, pp.197-203, 1999.
Al-Qahtani, H., Yilbas, B.S., Entropy generation rate during laser pulse heating: Effect of laser pulse parameters on entropy generation rate, Optics and Lasers in engineering, vol.46, pp.27-33, 2008.
Brazhnikov, A.M., Karpychev, V.A., Luikova, A.V., One engineering method of calculating heat conduction processes, Inzhenerno Fizicheskij Zhurnal, vol.28, pp.677–680, 1975.
Bagagia, H.G., Johnson, D.T., Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment, International Journal of Hyperthermia, vol. 21, pp. 57-75, 2005.
Cattaneo, C., Surune forme de l’équation de la chaleur éliminant le paradoxe d’une propagation instantanée, C.R. Acad. Sci., vol.247, pp.431-433, 1958.
Chen, C.K., Ho, S.H., Application of differential transformation to eigenvalue problem, Appl. Math. Comput., vol.79, pp.173-188, 1996.
Chiou, J.S., Tzeng, J.R., Application of the Taylor transformation to nonlinear vibration problems, Trans. ASME, J. Vib. Acoust., vol.118, pp.83-87,1996.
Chen, C.K., Ho, S.H., Free vibration analysis of non-uniform Timoshenko beam using differential transform, Applied Mathematical modeling, vol.22, pp.219-234, 1998.
Craciunescu, O. I., Clegg, S.T., Pulsatile blood flow effects on temperature distribution and heat transfer in rigid vessels, Journal of Biomechanical Engineering. vol123, pp.500-505, 2001.
Durkee, J.W., Antich, P.P., Lee, C.E., Exact solutions to the multiregion time-dependent bioheat equation I: Solution development, Phys Med Biol, vol.35, pp.847-867, 1990.
Díaz, S.H., Aguilar, G., Basu, R., Lavernia, E., Wong, B.J.F., Modeling the thermal response of porcine cartilage to laser irradiation, IEEE J. on Selected Topics in Quantum electronics, vol.7, pp.944-951, 2001.
Deng, Z. S., Liu, J., Analytical study on bioheat transfer problems with spatial or transient heating on skin surface or inside biological bogies, J. Biomed. Engrg., vol.124, pp.638-649, 2002.
DasGupta, D., Maltzahn, G.V., Ghosh, S., Bhatia, S.N., Das, S.K., Chakrabort, S., Probing nanoantenna-directed photothermal destruction of tumors using noninvasive laser irradiation, Applied physics letters, vol.95, pp.233701-1 – 233701-3, 2009.
Gilchrist, R.K., Medal, R., Shorey. W.D., Hanselman, R.C., Parrott, J.C., Taylor, C.B., Selective inductive heating of lymph, Ann Surg, vol.146, pp.596-606, 1957.
Gautheric, M., Thermopathology of breast cancer: measurement and analysis of in vivo temperature and blood flow, Ann. N. Y. Acad. Sci., vol.335, pp.383-415, 1980.
Herwig, H. and Beckert, K., Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure, Heat Mass Transfer, vol.36, pp.387-392, 2000.
Hu, L., Gupta, A., Gore, J.P., Xu, L.X., Effect of forced convection on the skin thermal expression of breast cancer, ASME J. Heat Transfer, vol.126. pp.204-211, 2004.
He, Y., Shirazaki, M., Liu, H., Himeno, R., Sun Z., A numerical coupling model to analyze the blood flow, temperature, and oxygen transport in human breast tumor under laser irradiation, Computer in Biology and Medicine, vol.36, pp.1336-1350, 2006.
Jaques, S.L., How tissue optics affect dosimetry for photochemical, photothermal, and photomechanical mechanisms of laser–tissue interaction, SPIE, vol.1599, pp.316–322, 1991.
Jacques, S.L., Laser–tissue interactions: photochemical, photothermal, and photomechanical, Surg. Clin. North Am., Vol.72, pp.531–558, 1992.
Jordan, A., Scholz, R., Wust, P., Fähling, H., Felix, R., Magnetic fluid hyperthermia (MFH): Cancer treatment with AC magnetic field induced excitation of biocompatible super paramagnetic nanoparticles, J. Magnetism and Magnetic Materials, vol.201, pp.413-419, 1999.
Jaunich, M., Raje, S., Kim, K., Mitra, K., Guo, Z., Bio-heat transfer analysis during short pulse laser irradiation of tissues, International Journal of Heat and Mass Transfer, vol.51, pp.5511-5521, 2008.
Kaminski, W., Hyperbolic heat conduction equation for material with a nonhomogenous inner structure, ASME J. Heat Transfer, vol.112, pp.555–560, 1990.
Khanafer, K., Bull, J.L., Pop, I., Berguer, R., Influence of pulsatile blood flow and heating scheme on the temperature distribution during hyperthermia treatment, International Journal of Heat and Mass Transfer, vol.50, pp.4883–4890, 2007.
Liu, J., Ren, Z., Wang, C., Interpretation of living tissue’s temperature oscillations by thermal wave theory, Chinese Sci. Bull., vol.40, pp.1493-1495, 1995.
Luikov, A.V., Application of irreversible thermodynamics methods to investigation of heat and mass transfer, International Journal of Heat and Mass Transfer, vol.9, pp.139–152, 1966.
Lu, W.Q., Liu, J., Zeng, Y., Simulation of the thermal wave propagation in biological tissues by the dual reciprocity boundary element method, Engineering Analysis with Boundary Elements, vol.22, pp.167-174, 1998.
Liu, J., Chen, X., Xu, L.X., New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating, IEEE transactions on Biomedical Engineering, vol.46, pp.420-428, 1999.
Liu, K.C., Thermal propagation analysis for living tissue with surface heating, International Journal of Thermal Sciences, vol.47, pp.507-513, 2008.
Liu, K.C. and Lin, C.N., Temperature prediction for tumor hyperthermia with the behavior of thermal wave, Numerical Heat Transfer, Part A, Vol. 58, pp.819-833, 2010.
Mitra, K., Kumar, S., Vedavarz, A., Moallemi, M.K., Experimental evidence of hyperbolic heat conduction in processed meat, ASME J. Heat Transfer, vol.117, pp.568–573, 1995.
Maenonoso, S. and Saita, S., Theoretical assessment of FePt nanoparticles as heating elements for magnetic hyperthermia treatment, IEEE Trans. on Magnetics, vol.42, pp.1638-1642, 2006.
Ni, J.H., Chang, C.C., Yang, Y.T., Chen, C.K., Surface heating problems of thermal propagation in living tissue solved by differential transformation method, Journal of the Chinese society of mechanical engineers, vol.72, pp.37-51, 2011.
Ocheltree, K.B., Frizzell, L.A., Determination of power deposition patterns for localized hyperthermia: A steady state analysis, Int J Hyperthermia, vol.3, pp.269-279,1987.
Özen, S., Helhel, S., Cerezci, O., Heat analysis of biological tissue exposed to microwave by using thermal wave model of bio-heat transfer (TWMBT), Burns, vol.34, pp.45-49, 2008.
Pennes, H.H., Analysis of tissue and arterial temperature in the resting human forearm., J. Appl. Physic. vol.1, pp.93-122, 1948.
Peng, H. S. and Chen, C. L., Application of hybrid differential transformation and finite difference method on the laser heating problem, Numerical Heat transfer A, vol.59, pp.28-42, 2011.
Rabin, Y., Shitzer, A., Numerical solution of the multidimensional freezing problem during cryosurgery, J. Biomed. Engrg., vol.120, pp.32-37, 1998.
Sieniutycz, S., The variational principle of classical type for non-coupled non-stationary irreversible transport processes with convective motion and relaxation., International Journal of Heat and Mass Transfer. vol.20, pp. 1221-1231, 1977.
Torvi, D.A., Dale, J.D., A finite element model of skin subjected to a flash fire, J. Biomed. Engrg., vol.116, pp.250-255, 1994.
Thiebaut , C., Lemonnier, D., Three-dimensional modeling and optimization of thermal fields induced in a human body during hyperthermia, International Journal of Thermal Sciences, vol.41, pp.500-508, 2002.
Vernotte, P., Les paradoxes de la théorie continue de L’ équation de la chaleur, C.R. Acad. Sci., vol.246, pp.3154-3155, 1958.
Vogl, T.J., Eichler, K., Zangos, S., Mack, M.G., Interstitial laser therapy of liver tumors, Med. Laser Appl. Vol.20, pp.115-118, 2005.
Yu, L.T., Chen, C.K., Application of Taylor transformation to optimize rectangular fins with variable thermal parameters, Appl. Math. Model., vol.22, pp.11-21, 1998.
Yuan, P., Numerical analysis of temperature and thermal dose response of biological tissues to thermal non-equilibrium during hyperthermia therapy, Medical Engineering & Physics, vol.30, pp.135-143, 2008.
Özisik, N., Heat Conduction, 2nd edn., New York: Wiley, 1993.
白桂霖,運用混合微分轉換法求解薄膜受超短脈衝雷射作用之研究,國立虎尾科技大學航空與電子科技研究所,碩士論文,2004.
倪瑞珣,生體表面加熱之熱波傳遞問題研究,國立成功大學機械工程學系,碩士論文,2010。
葉韋志,微分變換於一維樑柱挫曲與熱傳導問題求解之應用,國立成功大學航空太空工程學系暨研究所,碩士論文,2004。
陳柏佑,混合微分轉換/有限差分法在非線性暫態熱傳問題之研究,國立成功大學機械工程學系,博士論文,2005。
楊雪慧,二維雙曲線型生物熱傳問題之新數值分析,國立成功大學機械工程學系,碩士論文,2010。
劉玫成,逆算法配合實驗數據預測生物組織之熱物理性質,國立成功大學機械工程學系,碩士論文,2002。
劉國基,雙曲線型擴散問題之探討,國立成功大學機械工程學系,博士論文,2002。