| 研究生: |
劉名育 Liu, Ming-yuh |
|---|---|
| 論文名稱: |
幾何平均與算數平均重設選擇權的定價 On the pricing of Geometric Average and Arithmetic Average Reset Options |
| 指導教授: |
黃銘欽
Huang, Min-ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 統計學系 Department of Statistics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 33 |
| 中文關鍵詞: | 風險中立 、Wilkinson近似法 、監控視窗 |
| 外文關鍵詞: | risk-neutral valuation, Wilkinson approximation, monitoring window, reset triggers |
| 相關次數: | 點閱:99 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
平均重設選擇權是一種路徑相依選擇權,其履約價可根據標的資產的平均價格之行為而重新設定。本文研究平均重設買權的定價,重設條款為若標的資產在監控視窗的平均價格小於原始履約價格,則在重設日會將履約價重新設定為此平均價格。我們在風險中立的架構下,推導離散型幾何平均重設選擇權的解析定價公式,當監控視窗內的觀察次數無窮多時,此定價公式變成連續型幾何平均重設選擇權的解析定價公式。我們也利用Wilkinson 近似法推導算術平均重設選擇權的近似訂價公式,模擬結果顯示此近似訂價公式的表現相當準確。
An average reset option is a path-dependent option whose strike price can be reset according to the behavior of the average price of the underlying asset. This thesis studies the average reset calls whose strike price will be reset to the prevailing average price over the monitoring window if the average price is below the original strike price on the reset date. The discrete geometric average and discrete arithmetic average are considered as the reset triggers. We derive the analytical pricing formula for the discrete geometric average reset call under the risk-neutral valuation. As the observation number goes to infinity, the pricing formula for the continuous geometric average reset call is obtained. For the discrete arithmetic average counterpart, we employ Wilkinson approximation to derive the approximate pricing formula. The simulation result shows that the approximate pricing formula is quite accurate.
[1] Angus, J. E. (1999). A Note on Pricing Asian Derivatives with Continuous Geometric Averaging. Journal of Futures Markets, 19, 845-858.
[2] Bouaziz, L., Briys, E., & Crouhy, M. (1994). The Pricing of Forward-Start Asian Options. Journal of Banking and Finance, 18, 823-839.
[3] Cheng, W. Y., & Zhang, S. (2000). The Analytics of Reset Options. Journal of Derivatives, 8, 59-71.
[4] Dai, T. S., Fang, Y. Y., & Lyuu, Y. D. (2005). Analytics for Geometric Average Trigger Reset Options. Applied Economics Letters, 12, 835-840.
[5] Gray, S., & Whaley, R. (1999). Reset Put Options: Valuation, Risk Characteristics, and an Application. Australian Journal of Management, 24, 1-20.
[6] Levy, E. (1992). Pricing European Average Rate Currency Options. Journal of International Money and Finance, 11, 474-491.
[7] Liao, S. L., & Wang, C. W. (2002). Pricing Arithmetic Average Reset Options with Control Variates. Journal of Derivatives, 10, 59-74.
[8] Liao, S. L., & Wang, C. W. (2003). The Valuation of Reset Options with Multiple Strike Resets and Reset Dates. Journal of Futures Markets, 23, 87-107.
[9] Milevsky, M. A., & Posner, S. E. (1998). Asian Options, the Sum of Lognormals, and the Reciprocal Gamma Distribution. Journal of Financial and Quantitative Analysis, 33, 409-422.
[10] Shreve S. (2004). Stochastic Calculus for Finance II Continuous-Time Models. New York: Springer.
[11] Turnbull, S.M., & Wakeman, L.M. (1991). A Quick Algorithm for Pricing European Average Options. Journal of Financial and Quantitative Analysis, 26, 377-389.
[12] Tsao, C. Y., Chang, C. Y., & Lin, C. G. (2003). Analytic Approximation Formulae for Pricing Forward-Starting. Journal of Futures Markets, 23, 487-516.
[13] Vorst, T. (1992). A Quick Algorithm for Pricing European Average Options. International Review of Financial Analysis, 1, 179-193.
[14] Zhang, P. G. (1998). Exotic Options: A Guide to Second Generation Options (2nd ed.). Singapore: World Scientic.