| 研究生: |
蔡怡儂 Tsai, Yi-nong |
|---|---|
| 論文名稱: |
在培養肝癌細胞株中建立複製C 型肝炎病毒報導系統 Establishment of reporter HCV replication systems in cultivated hepatoma cell lines |
| 指導教授: |
楊孔嘉
Young, Kung-Chia 張定宗 Chang, Ting-Tsung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | C型肝炎病毒 、複製 |
| 外文關鍵詞: | HCV, replicon |
| 相關次數: | 點閱:78 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
C型肝炎病毒(Hepatitis C virus, HCV)屬於黃熱病毒科肝炎病毒屬,是ㄧ個具有單股正向RNA基因體的病毒。HCV感染會引起急性或慢性肝炎,更嚴重的會演變成肝硬化或肝癌。HCV的基因體可以轉譯一條大約3000個胺基酸的多蛋白,再藉由細胞產生的蛋白水解酶或是病毒本身製造的蛋白水解切割為10個具功能的病毒蛋白。HCV感染全球大約1億七千萬人口。一直以來因為缺少了ㄧ個有效自然的HCV感染模式,也因此對於研究HCV的生活史以及宿主與病毒之間的交互作用關係必須依賴HCV病毒株的建立以及細胞培養系統。在本篇研究中,主要目標是建立不同長度的HCV subgenomic clones.分別含有從非結構性蛋白(NS)2或NS3開始一直到最後的3’端非轉譯區。為了方便篩選以及分析,每一個HCV subgenomic clone 會接上一個報導
基因,包含抗藥性基因neomycin phosphotransferase gene、 加強型綠色螢光蛋白基因(enhanced green fluorescent protein gene)或是螢火蟲冷光酵素基因(firefly luciferase gene).同時我們也在實驗室中建立了對HCV RNA具高度容忍性的細胞株。將帶有HCV RNA會自我複製的Huh-7細胞經過67天的干擾素(IFN-α)的治療後,HCV RNA會被完全的清除,稱為cured Huh-7細胞株。Huh-7或是cured Huh-7細胞溶解液中的冷光酵素活性在72小時內持續的被偵測,結果顯示帶有螢火蟲冷光基因的HCV subgenomic HCV RNA 可以在cured Huh-7 細胞中有效複製,但是在Huh-7細胞中則不行。而且為了讓此複製系統穩定,我們更進一步的調整宿主細胞的狀態以及
分析的條件,使達到最佳化。因此,本篇研究成功的在培養的肝癌Huh-7細胞株中建立了暫時表現的C型肝炎病毒報導系統,這個系統為研究HCV複製相關機制或是與宿主細胞之間的交互作用提供了ㄧ個很好的工具。
Hepatitis C virus (HCV) belongs to the Hepacivirus genus in Flaviviridae family and is a single positive-stranded RNA virus that causes acute and chronic hepatitis, cirrhosis and hepatocellular carcinoma. HCV genome encodes a polyprotein of about 3,000 amino acids, which can be processed into 10 mature viral proteins by cellular or viral proteases. It affects an estimated 170 million people worldwide. Because of lacking efficiently native infection models, investigation of HCV life cycle and host-virus interaction mostly depended on the establishment of HCV molecular clones. In this study, we aimed to establish HCV subgenomic clones with different length, starting from nonstructural protein (NS) 2 or NS3 to the 3’ untranslation region. In order to facilitate clone selection and further analysis, each of HCV subgenomic clone was constructed to carry one of the following reporter genes, including neomycin phosphotransferase gene, enhanced green fluorescent protein gene and firefly luciferase gene. We also set up highly permissive cell line (cured Huh-7) for subgenomic HCV RNA replication by prolonged treatment with IFN-α. After 67 days, the self-replicating subgenomic RNA could be eliminated from Huh-7 cells. Luciferase activity in Huh-7 and cured Huh-7 cell extracts was measured over 72 h and the results showed that the bicistronic, subgenomic HCV RNA containing firefly luciferase gene replicated well in cured Huh-7 cells but not Huh-7 cells. Furthermore, we optimize the cellular environment for HCV replication and analytic conditions. Thus, the transient reporter HCV replication system was established in cured Huh-7. This in vitro HCV replicative system provides a tool for researching HCV replication.
1.Choo, Q.L., et al., Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science, 1989. 244(4902): p. 359-62.
2.Choo, Q.L., et al., Genetic organization and diversity of the hepatitis C virus. Proc Natl Acad Sci U S A, 1991. 88(6): p. 2451-5.
3.Hepatitis C: global prevalence. Wkly Epidemiol Rec, 1997. 72(46): p. 341-4.
4.Alter, M.J., Epidemiology of hepatitis C virus infection. World J Gastroenterol, 2007. 13(17): p. 2436-41.
5.Alter, H.J., To C or not to C: these are the questions. Blood, 1995. 85(7): p. 1681-95.
6.Koike, K., et al., Molecular mechanism of viral hepatocarcinogenesis. Oncology, 2002. 62 Suppl 1: p. 29-37.
7.Simmonds, P., et al., Classification of hepatitis C virus into six major genotypes and a series of subtypes by phylogenetic analysis of the NS-5 region. J Gen Virol, 1993. 74 ( Pt 11): p. 2391-9.
8.Bukh, J., R.H. Miller, and R.H. Purcell, Genetic heterogeneity of hepatitis C virus: quasispecies and genotypes. Semin Liver Dis, 1995. 15(1): p. 41-63.
9.Sy, T. and M.M. Jamal, Epidemiology of hepatitis C virus (HCV) infection. Int J Med Sci, 2006. 3(2): p. 41-6.
10.Di Bisceglie, A.M. and J.H. Hoofnagle, Optimal therapy of hepatitis C. Hepatology, 2002. 36(5 Suppl 1): p. S121-7.
11.Glue, P., et al., Pegylated interferon-alpha2b: pharmacokinetics, pharmacodynamics, safety, and preliminary efficacy data. Hepatitis C Intervention Therapy Group. Clin Pharmacol Ther, 2000. 68(5): p. 556-67.
12.Lindsay, K.L., et al., A randomized, double-blind trial comparing pegylated interferon alfa-2b to interferon alfa-2b as initial treatment for chronic hepatitis C. Hepatology, 2001. 34(2): p. 395-403.
13.Zeuzem, S., et al., Peginterferon alfa-2a in patients with chronic hepatitis C. N Engl J Med, 2000. 343(23): p. 1666-72.
14.Bartenschlager, R., M. Frese, and T. Pietschmann, Novel insights into hepatitis C virus replication and persistence. Adv Virus Res, 2004. 63: p. 71-180.
15.Lindenbach, B.D. and C.M. Rice, Unravelling hepatitis C virus replication from genome to function. Nature, 2005. 436(7053): p. 933-8.
16.Friebe, P. and R. Bartenschlager, Genetic analysis of sequences in the 3' nontranslated region of hepatitis C virus that are important for RNA replication. J Virol, 2002. 76(11): p. 5326-38.
17.Yanagi, M., et al., In vivo analysis of the 3' untranslated region of the hepatitis C virus after in vitro mutagenesis of an infectious cDNA clone. Proc Natl Acad Sci U S A, 1999. 96(5): p. 2291-5.
18.Moradpour, D., F. Penin, and C.M. Rice, Replication of hepatitis C virus. Nat Rev Microbiol, 2007. 5(6): p. 453-63.
19.Ravaggi, A., et al., Intracellular localization of full-length and truncated hepatitis C virus core protein expressed in mammalian cells. J Hepatol, 1994. 20(6): p. 833-6.
20.Suzuki, R., et al., Nuclear localization of the truncated hepatitis C virus core protein with its hydrophobic C terminus deleted. J Gen Virol, 1995. 76 ( Pt 1): p. 53-61.
21.Yamaguchi, A., et al., Hepatitis C virus core protein modulates fatty acid metabolism and thereby causes lipid accumulation in the liver. Dig Dis Sci, 2005. 50(7): p. 1361-71.
22.Zhu, N., et al., Hepatitis C virus core protein binds to the cytoplasmic domain of tumor necrosis factor (TNF) receptor 1 and enhances TNF-induced apoptosis. J Virol, 1998. 72(5): p. 3691-7.
23.Hahn, C.S., et al., The HCV core protein acts as a positive regulator of fas-mediated apoptosis in a human lymphoblastoid T cell line. Virology, 2000. 276(1): p. 127-37.
24.Ray, R.B., K. Meyer, and R. Ray, Suppression of apoptotic cell death by hepatitis C virus core protein. Virology, 1996. 226(2): p. 176-82.
25.Jin, D.Y., et al., Hepatitis C virus core protein-induced loss of LZIP function correlates with cellular transformation. Embo J, 2000. 19(4): p. 729-40.
26.Kato, N., et al., Activation of intracellular signaling by hepatitis B and C viruses: C-viral core is the most potent signal inducer. Hepatology, 2000. 32(2): p. 405-12.
27.Naganuma, A., et al., Activation of the interferon-inducible 2'-5'-oligoadenylate synthetase gene by hepatitis C virus core protein. J Virol, 2000. 74(18): p. 8744-50.
28.Moriya, K., et al., Hepatitis C virus core protein induces hepatic steatosis in transgenic mice. J Gen Virol, 1997. 78 ( Pt 7): p. 1527-31.
29.Moriya, K., et al., The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med, 1998. 4(9): p. 1065-7.
30.Op De Beeck, A., L. Cocquerel, and J. Dubuisson, Biogenesis of hepatitis C virus envelope glycoproteins. J Gen Virol, 2001. 82(Pt 11): p. 2589-95.
31.Op De Beeck, A., et al., Characterization of functional hepatitis C virus envelope glycoproteins. J Virol, 2004. 78(6): p. 2994-3002.
32.Bartosch, B., J. Dubuisson, and F.L. Cosset, Infectious hepatitis C virus pseudo-particles containing functional E1-E2 envelope protein complexes. J Exp Med, 2003. 197(5): p. 633-42.
33.Cocquerel, L., C. Voisset, and J. Dubuisson, Hepatitis C virus entry: potential receptors and their biological functions. J Gen Virol, 2006. 87(Pt 5): p. 1075-84.
34.Dreux, M., et al., High density lipoprotein inhibits hepatitis C virus-neutralizing antibodies by stimulating cell entry via activation of the scavenger receptor BI. J Biol Chem, 2006. 281(27): p. 18285-95.
35.Keck, Z.Y., et al., Human monoclonal antibody to hepatitis C virus E1 glycoprotein that blocks virus attachment and viral infectivity. J Virol, 2004. 78(13): p. 7257-63.
36.Pietschmann, T., et al., Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A, 2006. 103(19): p. 7408-13.
37.Weiner, A.J., et al., Variable and hypervariable domains are found in the regions of HCV corresponding to the flavivirus envelope and NS1 proteins and the pestivirus envelope glycoproteins. Virology, 1991. 180(2): p. 842-8.
38.Kato, N., et al., Marked sequence diversity in the putative envelope proteins of hepatitis C viruses. Virus Res, 1992. 22(2): p. 107-23.
39.Sala, M. and S. Wain-Hobson, Are RNA viruses adapting or merely changing? J Mol Evol, 2000. 51(1): p. 12-20.
40.Vyas, J., A. Elia, and M.J. Clemens, Inhibition of the protein kinase PKR by the internal ribosome entry site of hepatitis C virus genomic RNA. Rna, 2003. 9(7): p. 858-70.
41.Taylor, D.R., et al., Inhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science, 1999. 285(5424): p. 107-10.
42.Wakita, T., et al., Production of infectious hepatitis C virus in tissue culture from a cloned viral genome. Nat Med, 2005. 11(7): p. 791-6.
43.Carrere-Kremer, S., et al., Subcellular localization and topology of the p7 polypeptide of hepatitis C virus. J Virol, 2002. 76(8): p. 3720-30.
44.Griffin, S.D., et al., The p7 protein of hepatitis C virus forms an ion channel that is blocked by the antiviral drug, Amantadine. FEBS Lett, 2003. 535(1-3): p. 34-8.
45.Pavlovic, D., et al., The hepatitis C virus p7 protein forms an ion channel that is inhibited by long-alkyl-chain iminosugar derivatives. Proc Natl Acad Sci U S A, 2003. 100(10): p. 6104-8.
46. Premkumar, A., et al., Cation-selective ion channels formed by p7 of hepatitis C virus are blocked by hexamethylene amiloride. FEBS Lett, 2004. 557(1-3): p. 99-103.
47.Sakai, A., et al., The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11646-51.
48.Grakoui, A., et al., A second hepatitis C virus-encoded proteinase. Proc Natl Acad Sci U S A, 1993. 90(22): p. 10583-7.
49.Lorenz, I.C., et al., Structure of the catalytic domain of the hepatitis C virus NS2-3 protease. Nature, 2006. 442(7104): p. 831-5.
50.Kolykhalov, A.A., et al., Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3' nontranslated region are essential for virus replication in vivo. J Virol, 2000. 74(4): p. 2046-51.
51.Welbourn, S., et al., Hepatitis C virus NS2/3 processing is required for NS3 stability and viral RNA replication. J Biol Chem, 2005. 280(33): p. 29604-11.
52.Franck, N., et al., Hepatitis C virus NS2 protein is phosphorylated by the protein kinase CK2 and targeted for degradation to the proteasome. J Virol, 2005. 79(5): p. 2700-8.
53.Yi, M., et al., Compensatory mutations in E1, p7, NS2, and NS3 enhance yields of cell culture-infectious intergenotypic chimeric hepatitis C virus. J Virol, 2007. 81(2): p. 629-38.
54.Kim, J.L., et al., Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell, 1996. 87(2): p. 343-55.
55.Tai, C.L., et al., The helicase activity associated with hepatitis C virus nonstructural protein 3 (NS3). J Virol, 1996. 70(12): p. 8477-84.
56.Banerjee, R. and A. Dasgupta, Specific interaction of hepatitis C virus protease/helicase NS3 with the 3'-terminal sequences of viral positive- and negative-strand RNA. J Virol, 2001. 75(4): p. 1708-21.
57.Frick, D.N., et al., The nonstructural protein 3 protease/helicase requires an intact protease domain to unwind duplex RNA efficiently. J Biol Chem, 2004. 279(2): p. 1269-80.
58.Pang, P.S., et al., The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. Embo J, 2002. 21(5): p. 1168-76.
59.Lundin, M., et al., Topology of the membrane-associated hepatitis C virus protein NS4B. J Virol, 2003. 77(9): p. 5428-38.
60.Egger, D., et al., Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol, 2002. 76(12): p. 5974-84.
61.Brass, V., et al., An amino-terminal amphipathic alpha-helix mediates membrane association of the hepatitis C virus nonstructural protein 5A. J Biol Chem, 2002. 277(10): p. 8130-9.
62.Tellinghuisen, T.L., et al., The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem, 2004. 279(47): p. 48576-87.
63.Penin, F., et al., Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J Biol Chem, 2004. 279(39): p. 40835-43.
64.Gale, M., Jr., et al., Control of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol, 1998. 18(9): p. 5208-18.
65.Appel, N., T. Pietschmann, and R. Bartenschlager, Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol, 2005. 79(5): p. 3187-94.
66.Moradpour, D., et al., Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol, 2004. 78(14): p. 7400-9.
67.Lee, H., et al., cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J Virol, 2004. 78(20): p. 10865-77.
68.Bressanelli, S., et al., Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol, 2002. 76(7): p. 3482-92.
69.Qin, W., et al., Oligomeric interaction of hepatitis C virus NS5B is critical for catalytic activity of RNA-dependent RNA polymerase. J Biol Chem, 2002. 277(3): p. 2132-7.
70.Yamashita, T., et al., RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J Biol Chem, 1998. 273(25): p. 15479-86.
71.Hsu, M., et al., Hepatitis C virus glycoproteins mediate pH-dependent cell entry of pseudotyped retroviral particles. Proc Natl Acad Sci U S A, 2003. 100(12): p. 7271-6.
72.Seipp, S., et al., Establishment of persistent hepatitis C virus infection and replication in vitro. J Gen Virol, 1997. 78 ( Pt 10): p. 2467-76.
73.Shimizu, Y.K., et al., Evidence for in vitro replication of hepatitis C virus genome in a human T-cell line. Proc Natl Acad Sci U S A, 1992. 89(12): p. 5477-81.
74.Kato, N., et al., Susceptibility of human T-lymphotropic virus type I infected cell line MT-2 to hepatitis C virus infection. Biochem Biophys Res Commun, 1995. 206(3): p. 863-9.
75.Pileri, P., et al., Binding of hepatitis C virus to CD81. Science, 1998. 282(5390): p. 938-41.
76.Scarselli, E., et al., The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. Embo J, 2002. 21(19): p. 5017-25.
77.Gardner, J.P., et al., L-SIGN (CD 209L) is a liver-specific capture receptor for hepatitis C virus. Proc Natl Acad Sci U S A, 2003. 100(8): p. 4498-503.
78.Pohlmann, S., et al., Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J Virol, 2003. 77(7): p. 4070-80.
79.Saunier, B., et al., Role of the asialoglycoprotein receptor in binding and entry of hepatitis C virus structural proteins in cultured human hepatocytes. J Virol, 2003. 77(1): p. 546-59.
80.Akazawa, D., et al., CD81 expression is important for the permissiveness of Huh7 cell clones for heterogeneous hepatitis C virus infection. J Virol, 2007. 81(10): p. 5036-45.
81.Agnello, V., et al., Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A, 1999. 96(22): p. 12766-71.
82.Bartosch, B., et al., An interplay between hypervariable region 1 of the hepatitis C virus E2 glycoprotein, the scavenger receptor BI, and high-density lipoprotein promotes both enhancement of infection and protection against neutralizing antibodies. J Virol, 2005. 79(13): p. 8217-29.
83.Bartenschlager, R., Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr Opin Microbiol, 2006. 9(4): p. 416-22.
84.Kolykhalov, A.A., et al., Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science, 1997. 277(5325): p. 570-4.
85.Yanagi, M., et al., Transcripts from a single full-length cDNA clone of hepatitis C virus are infectious when directly transfected into the liver of a chimpanzee. Proc Natl Acad Sci U S A, 1997. 94(16): p. 8738-43.
86.Lohmann, V., et al., Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 1999. 285(5424): p. 110-3.
87.Pietschmann, T. and R. Bartenschlager, The hepatitis C virus replicon system and its application to molecular studies. Curr Opin Drug Discov Devel, 2001. 4(5): p. 657-64.
88.Blight, K.J., J.A. McKeating, and C.M. Rice, Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol, 2002. 76(24): p. 13001-14.
89.Friebe, P., et al., Kissing-loop interaction in the 3' end of the hepatitis C virus genome essential for RNA replication. J Virol, 2005. 79(1): p. 380-92.
90.Evans, M.J., C.M. Rice, and S.P. Goff, Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc Natl Acad Sci U S A, 2004. 101(35): p. 13038-43.
91.Neddermann, P., et al., Reduction of hepatitis C virus NS5A hyperphosphorylation by selective inhibition of cellular kinases activates viral RNA replication in cell culture. J Virol, 2004. 78(23): p. 13306-14.
92.Ikeda, M., et al., Selectable subgenomic and genome-length dicistronic RNAs derived from an infectious molecular clone of the HCV-N strain of hepatitis C virus replicate efficiently in cultured Huh7 cells. J Virol, 2002. 76(6): p. 2997-3006.
93.Pietschmann, T., et al., Persistent and transient replication of full-length hepatitis C virus genomes in cell culture. J Virol, 2002. 76(8): p. 4008-21.
94.Blight, K.J., et al., Efficient replication of hepatitis C virus genotype 1a RNAs in cell culture. J Virol, 2003. 77(5): p. 3181-90.
95.Kato, T., et al., Sequence analysis of hepatitis C virus isolated from a fulminant hepatitis patient. J Med Virol, 2001. 64(3): p. 334-9.
96.Kato, T., et al., Efficient replication of the genotype 2a hepatitis C virus subgenomic replicon. Gastroenterology, 2003. 125(6): p. 1808-17.
97.Zhong, J., et al., Robust hepatitis C virus infection in vitro. Proc Natl Acad Sci U S A, 2005. 102(26): p. 9294-9.
98.Lindenbach, B.D., et al., Complete replication of hepatitis C virus in cell culture. Science, 2005. 309(5734): p. 623-6.
99.Yi, M., et al., Production of infectious genotype 1a hepatitis C virus (Hutchinson strain) in cultured human hepatoma cells. Proc Natl Acad Sci U S A, 2006. 103(7): p. 2310-5.
100.Krieger, N., V. Lohmann, and R. Bartenschlager, Enhancement of hepatitis C virus RNA replication by cell culture-adaptive mutations. J Virol, 2001. 75(10): p. 4614-24.
101.Lohmann, V., et al., Mutations in hepatitis C virus RNAs conferring cell culture adaptation. J Virol, 2001. 75(3): p. 1437-49.
102.Lohmann, V., et al., Viral and cellular determinants of hepatitis C virus RNA replication in cell culture. J Virol, 2003. 77(5): p. 3007-19.
103.Targett-Adams, P. and J. McLauchlan, Development and characterization of a transient-replication assay for the genotype 2a hepatitis C virus subgenomic replicon. J Gen Virol, 2005. 86(Pt 11): p. 3075-80.
104.Tu, H., et al., Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology, 1999. 263(1): p. 30-41.
105.Hamamoto, I., et al., Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. J Virol, 2005. 79(21): p. 13473-82.
106.Wang, C., et al., Identification of FBL2 as a geranylgeranylated cellular protein required for hepatitis C virus RNA replication. Mol Cell, 2005. 18(4): p. 425-34.
107.Ye, J., et al., Disruption of hepatitis C virus RNA replication through inhibition of host protein geranylgeranylation. Proc Natl Acad Sci U S A, 2003. 100(26): p. 15865-70.
108.Watashi, K., et al., Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell, 2005. 19(1): p. 111-22.
109.Sumpter, R., Jr., et al., Regulating intracellular antiviral defense and permissiveness to hepatitis C virus RNA replication through a cellular RNA helicase, RIG-I. J Virol, 2005. 79(5): p. 2689-99.
110.Windisch, M.P., et al., Dissecting the interferon-induced inhibition of hepatitis C virus replication by using a novel host cell line. J Virol, 2005. 79(21): p. 13778-93.
111.Yeh, C.T., et al., Identification of a hepatic factor capable of supporting hepatitis C virus replication in a nonpermissive cell line. J Virol, 2001. 75(22): p. 11017-24.
112.Guo, J.T., V.V. Bichko, and C. Seeger, Effect of alpha interferon on the hepatitis C virus replicon. J Virol, 2001. 75(18): p. 8516-23.