簡易檢索 / 詳目顯示

研究生: 王詠茹
Wang, Yung-Ju
論文名稱: GIT1在HeLa細胞中的生長和移動的角色
The role of GIT1 in cell proliferation and motility of HeLa cells.
指導教授: 呂增宏
Leu, Tzeng-Horng
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 63
中文關鍵詞: GIT1FAK細胞生長細胞移動
外文關鍵詞: GIT1, FAK, Proliferation, Migration
相關次數: 點閱:73下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • GIT1 (全名為G protein-coupled receptor kinase-interacting protein 1)為一種多功能的蛋白質參與在不同的細胞進展之中。GIT1被標定為ADP ribosylation factor GTPase-activating protein (ARF-GAP) ,其會與G protein-coupled receptor kinases (GRKs) 結合並調控細胞膜運輸。GIT1透過與各種信號分子的互相作用,例如paxillin蛋白、focal adhesion kinase (FAK)、Src 或是 mitogen-activated protein kinase kinase 1 (MEK1),在正常細胞中可調節focal
    adhesion turnover以及移動。由於FAK和Src可以調控癌細胞的移動和生長,故我們想知道GIT1是否也參與癌細胞的移動與生長的過程之中。一開始,我們先確認GIT1在一些癌細胞株(包括HeLa細胞和SW620細胞)中的蛋白表現。 在HeLa細胞其GIT1是充分表達的。當我們將HeLa細胞中以git1 siRNA進行轉染,觀察到GIT1 knockdown時會降低FAK蛋白的表現。進一步發現FAK蛋白下降並非是由於降低FAK的RNA轉錄造成,而是透過降低FAK蛋白的穩定性。在MTT試驗和軟瓊脂實驗中分別指出,GIT1 knockdown會抑制細胞貼附性生長(anchorage-dependent cell growth)以及細胞非貼附性生長(anchorage-independent cell growth)。另一方面,GIT1 knockdown明顯的抑制細胞的移動。由於細胞移動是一個動態的過程,此時focal adhesion的形成和分解是需要協調的。從免疫螢光染色實驗中顯示GIT1 knockdown會降低focal adhesion的形成,因此影響細胞的遷移能力。在本篇研究中,我們證實了GIT1 knockdown會抑制HeLa細胞的生長與移動,這暗示著GIT1可能作為抗癌的標的蛋白。

    GIT1 (G protein-coupled receptor kinase-interacting protein 1) is a multidomain protein involved in diverse cellular processes. GIT1 is identified as an ADP
    ribosylation factor GTPase-activating protein (ARF-GAP) that binds G protein-coupled receptor kinases (GRKs) and regulates membrane trafficking. By interacting with various signaling molecules, such as paxillin, focal adhesion kinase (FAK), Src and mitogen-activated protein kinase kinase 1 (MEK1), GIT1 modulates focal adhesion turnover and mobility in normal cells. Since FAK and Src could mediate both cell migration and proliferation in cancer cells, we wonder whether GIT1 may also participate in these processes. At first, we confirm the protein expression of GIT1 in several cancer cell lines, including HeLa cells and SW620 cells. HeLa cells express ample GIT1. By transient transfection of git1 siRNA in HeLa cells, we observe that GIT1 knockdown reduces expression of FAK. This FAK reduction is not due to the reduction of RNA transcript, but rather by decreasing FAK protein stability. MTT assay and cell culture in soft agar separately show that GIT1 knockdown inhibits anchorage-dependent and -independent cell growth. In addition, GIT1 knockdown inhibits cell migration. Cell migration is a dynamic process that requires the coordinated formation and disassembly of focal adhesions. Immunofluorescence microscopy shows that GIT1 knockdown reduces focal adhesion formation. This result indicates that GIT1 may affect cell migration via facilitate the formation of focal adhesion. Our results indicate that GIT1 participates in HeLa cell proliferation and migration, suggesting it may be an important anticancer drug target.

    縮寫簡表 1 第一章 緒論 4 第二章 實驗材料與方法 9 第一節 實驗材料 10 第二節 實驗方法 13 第三章 實驗結果 29 第四章 討論 37 第五章 圖表 43 參考文獻 57 附錄 61

    Bellis, S.L., Miller, J.T., and Turner, C.E. (1995). Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. The Journal of biological chemistry 270, 17437-17441.

    Bertolucci, C.M., Guibao, C.D., and Zheng, J.J. (2008). Phosphorylation of paxillin LD4 destabilizes helix formation and inhibits binding to focal adhesion kinase. Biochemistry 47, 548-554.

    Cary, L.A., Han, D.C., Polte, T.R., Hanks, S.K., and Guan, J.L. (1998). Identification of p130Cas as a mediator of focal adhesion kinase-promoted cell migration. J Cell Biol 140, 211-221.

    Chan, K.T., Bennin, D.A., and Huttenlocher, A. (2010). Regulation of adhesion dynamics by calpain-mediated proteolysis of focal adhesion kinase (FAK). The Journal of biological chemistry 285, 11418-11426.

    Di Cesare, A., Paris, S., Albertinazzi, C., Dariozzi, S., Andersen, J., Mann, M., Longhi, R., and de Curtis, I. (2000). p95-APP1 links membrane transport to Rac-mediated reorganization of actin. Nat Cell Biol 2, 521-530.

    Guarino, M. (2010). Src signaling in cancer invasion. J Cell Physiol 223, 14-26.

    Hanks, S.K., Ryzhova, L., Shin, N.Y., and Brabek, J. (2003). Focal adhesion kinase signaling activities and their implications in the control of cell survival and motility. Front Biosci 8, d982-996.

    Hoefen, R.J., and Berk, B.C. (2006). The multifunctional GIT family of proteins. Journal of cell science 119, 1469-1475.

    Lal, H., Verma, S.K., Foster, D.M., Golden, H.B., Reneau, J.C., Watson, L.E., Singh, H., and Dostal, D.E. (2009). Integrins and proximal signaling mechanisms in cardiovascular disease. Front Biosci 14, 2307-2334.

    Loo, T.H., Ng, Y.W., Lim, L., and Manser, E. (2004). GIT1 activates p21-activated kinase through a mechanism independent of p21 binding. Mol Cell Biol 24, 3849-3859.

    Manabe, R., Kovalenko, M., Webb, D.J., and Horwitz, A.R. (2002). GIT1 functions in a motile, multi-molecular signaling complex that regulates protrusive activity and cell migration. Journal of cell science 115, 1497-1510.

    McLean, G.W., Carragher, N.O., Avizienyte, E., Evans, J., Brunton, V.G., and Frame, M.C. (2005). The role of focal-adhesion kinase in cancer - a new therapeutic opportunity. Nat Rev Cancer 5, 505-515.

    Premont, R.T., Claing, A., Vitale, N., Freeman, J.L., Pitcher, J.A., Patton, W.A., Moss, J., Vaughan, M., and Lefkowitz, R.J. (1998). beta2-Adrenergic receptor regulation by GIT1, a G protein-coupled receptor kinase-associated ADP ribosylation factor GTPase-activating protein. Proc Natl Acad Sci U S A 95, 14082-14087.

    Schlaepfer, D.D., Mitra, S.K., and Ilic, D. (2004). Control of motile and invasive cell phenotypes by focal adhesion kinase. Biochim Biophys Acta 1692, 77-102.

    Schmalzigaug, R., Garron, M.L., Roseman, J.T., Xing, Y., Davidson, C.E., Arold, S.T., and Premont, R.T. (2007). GIT1 utilizes a focal adhesion targeting-homology domain to bind paxillin. Cellular signalling 19, 1733-1744.

    Schwock, J., Dhani, N., and Hedley, D.W. (2010). Targeting focal adhesion kinase signaling in tumor growth and metastasis. Expert Opin Ther Targets 14, 77-94.

    Shikata, Y., Birukov, K.G., Birukova, A.A., Verin, A., and Garcia, J.G. (2003a). Involvement of site-specific FAK phosphorylation in sphingosine-1 phosphate- and thrombin-induced focal adhesion remodeling: role of Src and GIT. FASEB J 17, 2240-2249.

    Shikata, Y., Birukov, K.G., and Garcia, J.G. (2003b). S1P induces FA remodeling in human pulmonary endothelial cells: role of Rac, GIT1, FAK, and paxillin. J Appl Physiol 94, 1193-1203.

    Totaro, A., Paris, S., Asperti, C., and de Curtis, I. (2007). Identification of an intramolecular interaction important for the regulation of GIT1 functions. Mol Biol Cell 18, 5124-5138.

    Turner, C.E., Brown, M.C., Perrotta, J.A., Riedy, M.C., Nikolopoulos, S.N., McDonald, A.R., Bagrodia, S., Thomas, S., and Leventhal, P.S. (1999). Paxillin LD4 motif binds PAK and PIX through a novel 95-kD ankyrin repeat, ARF-GAP protein: A role in cytoskeletal remodeling. J Cell Biol 145, 851-863.

    Webb, D.J., Parsons, J.T., and Horwitz, A.F. (2002). Adhesion assembly, disassembly and turnover in migrating cells -- over and over and over again. Nat Cell Biol 4, E97-100.

    Yin, G., Zheng, Q., Yan, C., and Berk, B.C. (2005). GIT1 is a scaffold for ERK1/2 activation in focal adhesions. The Journal of biological chemistry 280, 27705-27712.

    Zhang, S., Hisatsune, C., Matsu-Ura, T., and Mikoshiba, K. (2009). G-protein-coupled receptor kinase-interacting proteins inhibit apoptosis by inositol 1,4,5-triphosphate receptor-mediated Ca2+ signal regulation. The Journal of biological chemistry 284, 29158-29169.

    Zhao, Z.S., Manser, E., Loo, T.H., and Lim, L. (2000). Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol Cell Biol 20, 6354-6363.

    下載圖示 校內:2015-07-26公開
    校外:2015-07-26公開
    QR CODE