簡易檢索 / 詳目顯示

研究生: 羅琬祺
Lo, Wan-Chi
論文名稱: 利用置換法製備多孔性雙金屬鈀-銀電極及其應用
Fabrication and applications of porous Pd-Ag bimetallic electrodes by galvanic replacement reaction
指導教授: 孫亦文
Sun, I-Wen
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 88
中文關鍵詞: 多孔銀電極置換反應
外文關鍵詞: porous silver electrode, galvanic replacement reaction
相關次數: 點閱:122下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以多孔性銀電極作為模板並藉由簡單的置換法製備多孔性鈀-銀雙金屬電極。
    在置換過程中,改變置換溶液濃度,反應溫度與反應時間等條件並同時利用開路電位對時間的變化觀察整個反應的進行。接著將置換過後的多孔性鈀-銀電極以附有能量散射光譜儀的掃描式電子顯微鏡觀察置換前後形貌的變化並確定鈀與銀兩元素的存在與兩者的分布情況,同時也使用X-光粉末繞射儀和X 射線光電子能譜分別來鑑定晶相與觀察其表面的元素組成,透過含有能量散射光譜儀與選區電子繞射的解析式分析電子顯微鏡確定多孔性雙金屬電極表面確實是以鈀與銀兩元素所組成。置換過後的多孔性雙金屬鈀-銀電極對於聯胺與乙醇氧化具有明顯的催化效果,由實驗結果可知含有鈀金屬可增進電極的穩定性。

    Porous Pd-Ag bimetallic electrodes have been fabricated via simple galvanic replacement reaction. The morphology strongly depend on the reaction temperature、reaction time and the concentration of Pd(NO3)2 solution. The reaction process was monitored by open circuit potential- time method. The Morphology and structure characterization by means of Scanning Electron Microscopy (SEM) and Ultrahigh
    Resolution Analytical Electron Microscope (HR-AEM) combined with Energy Dispersive X-ray Spectrometry (EDX) indicates that the replacement reaction between porous silver and Pd(NO3)2 solution results in a porous bimetallic Pd-Ag structure and the selected area electron diffraction (SAED) confirms the formation of bimetallic material . The X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) reveal that the porous silver covered with palladium. The resulted porous bimetallic Pd-Ag structure exhibits catalytic activity towards electrooxidation of hydrazine and ethanol.

    中文摘要(I) 英文摘要(II) 誌謝(III) 目錄(IV) 圖目錄(VI) 表目錄(IX) 第一章 緒論(1) 1-1電化學合金/去合金法(1) 1-2多孔性金屬材料(5) 1-3室溫離子液體(6) 1-4雙金屬多孔性材料(10) 1-5醇類與聯胺的催化反應(14) 1-6研究動機與目的(16) 第二章 實驗原理與方法(17) 2-1循環伏安法(cyclic voltammetry,CV)(17) 2-2定電位法(chronoamperometry,CA)(19) 2-3開路電位法(open circuit potential-time,OCP-t)(20) 2-4置換反應(replacement reaction)(20) 第三章 實驗藥品與儀器(21) 第四章 結果與討論(28) 4-1多孔性銀絲電極的製作(28) 4-1-1 銀絲電極在60-40mol% ZnCl2-EMIC中的電化學行為(28) 4-2利用置換反應以多孔銀絲電極為模板製備多孔鈀-銀雙金屬電極(34) 4-2-1多孔性銀電極於硝酸鈀溶液中的置換反應與開路電位的變化(34) 4-2-2利用開路電位監測置換反應的進行(35) 4-2-3置換時間對電極形貌的影響與電位的變化(36) 4-2-4溫度對置換反應的影響(46) 4-2-5濃度對置換反應的影響(49) 4-3多孔鈀-銀雙金屬電極結構鑑定(52) 4-3-1X-光粉末繞射儀 (X-ray diffraction, XRD)分析(52) 4-3-2多孔鈀-銀雙金屬電極的EDX分析(53) 4-3-3X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)分析(55) 4-3-4高解析分析電子顯微鏡(Ultra-High Resolution Electron Microscopic, HR-AEM)分析(58) 4-4不同配位陰離子的鈀溶液的置換反應(63) 4-5多孔性鈀-銀雙金屬電極應用(69) 4-5-1多孔性銀絲電極表面積(69) 4-5-2多孔鈀-銀雙金屬電極-聯胺催化(70) 4-5-3多孔鈀-銀雙金屬電極-乙醇催化(74) 4-6多孔鈀-銀雙金屬電極其穩定性探討(80) 第五章 結論(83) 參考文獻(84)

    1. R. C. Newman, S. G. Corcoran, J. Erlebacher, M. J. Aziz and K. Sieradzki, Mrs Bulletin, 1999, 24, 24-28.
    2. J. F. Huang and I-W. Sun, Advanced Functional Materials, 2005, 15, 989-994.
    3. F. H. Yeh, C. C. Tai, J. F. Huang and I-W. Sun, Journal of Physical Chemistry B, 2006, 110, 5215-5222.
    4. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov and K. Sieradzki, Nature, 2001, 410, 450-453.
    5. J. Erlebacher and K. Sieradzki, Scripta Materialia, 2003, 49, 991-996.
    6. J. Erlebacher, Journal of the Electrochemical Society, 2004, 151, C614-C626.
    7. A. J. Forty, Nature, 1979, 282, 597-598.
    8. J. D. Fritz and H. W. Pickering, Journal of the Electrochemical Society, 1991, 138, 3209-3218.
    9. S. Rambert and D. Landolt, Electrochimica Acta, 1986, 31, 1433-1441.
    10. S. Rambert and D. Landolt, Electrochimica Acta, 1986, 31, 1421-1431.
    11. Y. Ding, Y. J. Kim and J. Erlebacher, Adv. Mater., 2004, 16, 1897-1900.
    12. T. P. Moffat, F. R. F. Fan and A. J. Bard, Journal of the Electrochemical Society, 1991, 138, 3224-3235.
    13. Pickerin.Hw and C. Wagner, Journal of the Electrochemical Society, 1967, 114, 698-706.
    14. M. J. Pryor and J. C. Fister, Journal of the Electrochemical Society, 1984, 131, 1230-1235.
    15. D. V. Pugh, A. Dursun and S. G. Corcoran, Journal of Materials Research, 2003, 18, 216-221.
    16. F. L. Jia, C. F. Yu, K. J. Deng and L. Z. Zhang, Journal of Physical Chemistry C, 2007, 111, 8424-8431.
    17. J. Biener, A. M. Hodge, A. V. Hamza, L. M. Hsiung and J. H. Satcher, Journal of Applied Physics, 2005, 97.
    18. M. Hakamada and M. Mabuchi, Nano Lett., 2006, 6, 882-885.
    19. D. V. Pugh, A. Dursun and S. G. Corcoran, Journal of the Electrochemical Society, 2005, 152, B455-B459.
    20. F. M. Al-Kharafi, B. G. Ateya and R. M. Abd Allah, Journal of Applied Electrochemistry, 2004, 34, 47-53.
    21. J. C. Thorp, K. Sieradzki, L. Tang, P. A. Crozier, A. Misra, M. Nastasi, D. Mitlin and S. T. Picraux, Applied Physics Letters, 2006, 88.
    22. C. X. Ji and P. C. Searson, Journal of Physical Chemistry B, 2003, 107, 4494-4499.
    23. L. Sun, C. L. Chien and P. C. Searson, Chem. Mat., 2004, 16, 3125-3129.
    24. J. F. Huang and I-W. Sun, Chem. Mat., 2004, 16, 1829-1831.
    25. A. Katagiri and M. Nakata, Journal of the Electrochemical Society, 2003, 150, C585-C590.
    26. W. P. Halperin, Rev. Mod. Phys., 1986, 58, 533-606.
    27. J. P. Novak, L. C. Brousseau, F. W. Vance, R. C. Johnson, B. I. Lemon, J. T. Hupp and D. L. Feldheim, J. Am. Chem. Soc., 2000, 122, 12029-12030.
    28. P. V. Kamat, Journal of Physical Chemistry B, 2002, 106, 7729-7744.
    29. N. Nath and A. Chilkoti, Anal. Chem., 2002, 74, 504-509.
    30. J. B. Jackson, S. L. Westcott, L. R. Hirsch, J. L. West and N. J. Halas, Applied Physics Letters, 2003, 82, 257-259.
    31. C. H. Chou, J. C. Chen, C. C. Tai, I-W. Sun and J. M. Zen, Electroanalysis, 2008, 20, 771-775.
    32. Y. W. Lin, C. C. Tai and I-W. Sun, Journal of the Electrochemical Society, 2007, 154, D316-D321.
    33. K. R. Seddon, J. Chem. Technol. Biotechnol., 1997, 68, 351-356.
    34. N. V. Plechkova and K. R. Seddon, Chemical Society Reviews, 2008, 37, 123-150.
    35. R. Sheldon, Chemical Communications, 2001, 2399-2407.
    36. R. J. Gale, B. Gilbert and R. A. Osteryoung, Inorganic Chemistry, 1978, 17, 2728-2729.
    37. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorganic Chemistry, 1982, 21, 1263-1264.
    38. J. S. Wilkes and M. J. Zaworotko, Journal of the Chemical Society-Chemical Communications, 1992, 965-967.
    39. P. A. Z. Suarez, J. E. L. Dullius, S. Einloft, R. F. DeSouza and J. Dupont, Polyhedron, 1996, 15, 1217-1219.
    40. K. R. Seddon, A. Stark and M. J. Torres, Pure and Applied Chemistry, 2000, 72, 2275-2287.
    41. P. Wasserscheid and W. Keim, Angewandte Chemie-International Edition, 2000, 39, 3772-3789.
    42. T. Welton, Chemical Reviews, 1999, 99, 2071-2083.
    43. S. I. Hsiu, J. F. Huang, I-W. Sun, C. H. Yuan and J. Shiea, Electrochimica Acta, 2002, 47, 4367-4372.
    44. Y. F. Lin and I-W. Sun, Electrochimica Acta, 1999, 44, 2771-2777.
    45. P. Y. Chen and I-W. Sun, Electrochimica Acta, 2001, 46, 1169-1177.
    46. P. Y. Chen, M. C. Lin and I-W. Sun, Journal of the Electrochemical Society, 2000, 147, 3350-3355.
    47. M. C. Lin, P. Y. Chen and I-W. Sun, Journal of the Electrochemical Society, 2001, 148, C653-C658.
    48. J. F. Huang and I-W. Sun, Journal of the Electrochemical Society, 2002, 149, E348-E355.
    49. J. F. Huang and I-W. Sun, Journal of the Electrochemical Society, 2004, 151, C8-C14.
    50. J. F. Huang and I-W. Sun, Electrochimica Acta, 2004, 49, 3251-3258.
    51. Y. G. Sun, B. T. Mayers and Y. N. Xia, Nano Lett., 2002, 2, 481-485.
    52. Y. G. Sun, B. Mayers and Y. N. Xia, Adv. Mater., 2003, 15, 641-646.
    53. H. P. Liang, H. M. Zhang, J. S. Hu, Y. G. Guo, L. J. Wan and C. L. Bai, Angewandte Chemie-International Edition, 2004, 43, 1540-1543.
    54. H. P. Liang, N. S. Lawrence, L. J. Wan, L. Jiang, W. G. Song and T. G. J. Jones, Journal of Physical Chemistry C, 2008, 112, 338-344.
    55. J. H. Choi, K. W. Park, I. S. Park, K. Kim, J. S. Lee and Y. E. Sung, Journal of the Electrochemical Society, 2006, 153, A1812-A1817.
    56. J. F. Huang, S. Vongehr, S. C. Tang and X. K. Meng, Journal of Physical Chemistry C, 2010, 114, 15005-15010.
    57. C. C. Qiu, R. Shang, Y. F. Xie, Y. R. Bu, C. Y. Li and H. Y. Ma, Mater. Chem. Phys., 2010, 120, 323-330.
    58. K. Koczkur, Q. F. Yi and A. C. Chen, Adv. Mater., 2007, 19, 2648-2652.
    59. M. S. Chen, D. Kumar, C. W. Yi and D. W. Goodman, Science, 2005, 310, 291-293.
    60. Y. G. Sun, Z. L. Tao, J. Chen, T. Herricks and Y. N. Xia, J. Am. Chem. Soc., 2004, 126, 5940-5941.
    61. C. X. Xu, R. Y. Wang, M. W. Chen, Y. Zhang and Y. Ding, Physical Chemistry Chemical Physics, 2010, 12, 239-246.
    62. M. Mohl, A. Kumar, A. L. M. Reddy, A. Kukovecz, Z. Konya, I. Kiricsi, R. Vajtai and P. M. Ajayan, Journal of Physical Chemistry C, 2010, 114, 389-393.
    63. X. F. Lu, M. McKiernan, Z. M. Peng, E. P. Lee, H. Yang and Y. N. Xia, Science of Advanced Materials, 2010, 2, 413-420.
    64. D. W. Wang, T. Li, Y. Liu, J. S. Huang and T. Y. You, Crystal Growth & Design, 2009, 9, 4351-4355.
    65. C. X. Xu, L. Q. Wang, R. Y. Wang, K. Wang, Y. Zhang, F. Tian and Y. Ding, Adv. Mater., 2009, 21, 2165-2169.
    66. C. X. Xu, Y. Zhang, L. Q. Wang, L. Q. Xu, X. F. Bian, H. Y. Ma and Y. Ding, Chem. Mat., 2009, 21, 3110-3116.
    67. H. Ji, J. Frenzel, Z. Qi, X. G. Wang, C. C. Zhao, Z. H. Zhang and G. Eggeler, Crystengcomm, 2010, 12, 4059-4062.
    68. X. Y. Lang, H. Guo, L. Y. Chen, A. Kudo, J. S. Yu, W. Zhang, A. Inoue and M. W. Chen, Journal of Physical Chemistry C, 2010, 114, 2600-2603.
    69. E. H. Yu, K. Scott and R. W. Reeve, J. Electroanal. Chem., 2003, 547, 17-24.
    70. H. P. Liu, J. P. Ye, C. W. Xu, S. P. Jiang and Y. X. Tong, Electrochemistry Communications, 2007, 9, 2334-2339.
    71. Z. Borkowska, A. Tymosiak-Zielinska and G. Shul, Electrochimica Acta, 2004, 49, 1209-1220.
    72. Y. G. Chen, L. Zhuang and J. T. Lu, Chin. J. Catal., 2007, 28, 870-874.
    73. I. Danaee, M. Jafarian, F. Forouzandeh, F. Gobal and M. G. Mahjani, Int. J. Hydrog. Energy, 2008, 33, 4367-4376.
    74. S. Garrod, M. E. Bollard, A. W. Nichollst, S. C. Connor, J. Connelly, J. K. Nicholson and E. Holmes, Chem. Res. Toxicol., 2005, 18, 115-122.
    75. E. H. Vernot, J. D. Macewen, R. H. Bruner, C. C. Haun, E. R. Kinkead, D. E. Prentice, A. Hall, R. E. Schmidt, R. L. Eason, G. B. Hubbard and J. T. Young, Fundam. Appl. Toxicol., 1985, 5, 1050-1064.
    76. A. Serov and C. Kwak, Applied Catalysis B-Environmental, 2010, 98, 1-9.
    77. A. Salimi, L. Miranzadeh and R. Hallaj, Talanta, 2008, 75, 147-156.
    78. J. B. Zheng, Q. L. Sheng, L. Li and Y. Shen, J. Electroanal. Chem., 2007, 611, 155-161.
    79. K. Yamada, K. Asazawa, K. Yasuda, T. Ioroi, H. Tanaka, Y. Miyazaki and T. Kobayashi, J. Power Sources, 2003, 115, 236-242.
    80. J. Li and X. Q. Lin, Sens. Actuator B-Chem., 2007, 126, 527-535.
    81. W. C. Ye, B. Yang, G. Y. Cao, L. Duan and C. M. Wang, Thin Solid Films, 2008, 516, 2957-2961.
    82. K. Yamada, K. Yasuda, H. Tanaka, Y. Miyazaki and T. Kobayashi, J. Power Sources, 2003, 122, 132-137.
    83. A. Salimi and R. Hallaj, Electroanalysis, 2004, 16, 1964-1971.
    84. J. S. Pinter, K. L. Brown, P. A. DeYoung and G. F. Peaslee, Talanta, 2007, 71, 1219-1225.
    85. C. Batchelor-McAuley, C. E. Banks, A. O. Simm, T. G. J. Jones and R. G. Compton, Analyst, 2006, 131, 106-110.
    86. G. Y. Gao, D. J. Guo, C. Wang and H. L. Li, Electrochemistry Communications, 2007, 9, 1582-1586.
    87. Q. F. Yi, L. Li, W. Q. Yu, Z. H. Zhou and G. R. Xu, J. Mol. Catal. A-Chem., 2008, 295, 34-38.
    88. G. W. Yang, G. Y. Gao, C. Wang, C. L. Xu and H. L. Li, Carbon, 2008, 46, 747-752.
    89. B. Dong, B. L. He, J. Huang, G. Y. Gao, Z. Yang and H. L. Li, J. Power Sources, 2008, 175, 266-271.
    90. C. Tan, F. Wang, J. J. Liu, Y. B. Zhao, J. J. Wang, L. H. Zhang, K. C. Park and M. Endo, Mater. Lett., 2009, 63, 969-971.
    91. L. Chen, G. Z. Hu, G. J. Zou, S. J. Shao and X. L. Wang, Electrochemistry Communications, 2009, 11, 504-507.
    92. Y. Shen, Q. Xu, H. Gao and N. N. Zhu, Electrochemistry Communications, 2009, 11, 1329-1332.
    93. G. Karim-Nezhad, R. Jafarloo and P. S. Dorraji, Electrochimica Acta, 2009, 54, 5721-5726.
    94. K. Korinek, J. Koryta and M. Musilova, J. Electroanal. Chem., 1969, 21, 319-&.
    95. Fleischm.M, D. Pletcher and K. Korinek, J. Electroanal. Chem., 1972, 34, 499-503.
    96. C. X. Xu, L. Wang, X. L. Mu and Y. Ding, Langmuir, 2010, 26, 7437-7443.
    97. A. J. Bard and L. R. Faulker, Electrochemical Method:Fundamentals and Applications(2nd ed.), John Wiley&Sons, New York, 2001.
    98. J. R. Sanders, The University of Mississippi 1987.
    99. A. J. Bard, R. Parsons and J. Jordan, Standard Potentials in Aqueous Solution, M. Dekker, New York, 1985.
    100. Y. G. Sun, B. Wiley, Z. Y. Li and Y. N. Xia, J. Am. Chem. Soc., 2004, 126, 9399-9406.
    101. T. Shibata, B. A. Bunker, Z. Y. Zhang, D. Meisel, C. F. Vardeman and J. D. Gezelter, J. Am. Chem. Soc., 2002, 124, 11989-11996.
    102. C. Alonso, R. C. Salvarezza, J. M. Vara and A. J. Arvia, Electrochimica Acta, 1990, 35, 1331-1336.
    103. A. Dursun, D. V. Pugh and S. G. Corcoran, Journal of the Electrochemical Society, 2003, 150, B355-B360.
    104. M. Brand, I. Eshkenazi and E. KirovaEisner, Anal. Chem., 1997, 69, 4660-4664.

    下載圖示 校內:2014-08-05公開
    校外:2014-08-05公開
    QR CODE