| 研究生: |
戴湘華 Tai, Hsiang-Hua |
|---|---|
| 論文名稱: |
鐵酸鉍(100)磊晶薄膜的域壁動態移動 Dynamic motion of domain wall in epitaxial BiFeO3(100) films |
| 指導教授: |
陳宜君
Chen, Yi-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 活化場 、域壁 、鐵酸鉍 |
| 外文關鍵詞: | activation field, domain wall, BiFeO3 |
| 相關次數: | 點閱:83 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,以壓電力顯微鏡(Piezoelectric Force Microscopy,PFM)在奈米尺度下定量的探討磊晶鐵酸鉍(BiFeO3,BFO)(100)薄膜在均勻的電域環境中域壁動態移動和觀察電域成長受已存在之域壁影響。同時觀測BFO樣品的表面形貌、水平(in-plane,IP)和垂直(out-of-plane,OP)方向之電域,其IP-PFM與OP-PFM觀測到的條紋狀電域,應為考量鐵電有序、磁電耦合與去極化能後,其本質傾向的穩定分佈狀態。對晶軸方向(100)的磊晶BFO薄膜動態量測結果顯示,電域成長過程主要為活化運動,其反向脈衝的活化場(activation field,α ~ 0.215 ± 0.25 MV/cm)小於正向脈衝的活化場(α ~ 0.367 ± 0.01 MV/cm)。非對稱的活化場說明了薄膜初始狀態喜歡朝下。在域壁上(附近)成長的電域,因為域壁上沒有固定的極化方向,所以電域在域壁上成長較容易。在大電壓下域壁上易產生非易軸(109゚或71゚)翻轉,為使域壁最後達穩定(能量較低狀態)而推動附近域壁,產生電域的形狀也從輻射狀到與類似矩形的形狀,其結果受不同角度之域壁間應力能與靜電能影響。
In this study, I present a quantitative study of the domain wall motion in epitaxial BiFeO3 (100) films and discuss the domain growth behaviors under the effect of existed domain walls by the piezoresponse force microscopy (PFM). The topography, in-plane (IP) and out-of-plane (OP) components of domains for BFO thin films can be revealed simultaneously. The stripe-like domains formed as normal states by considering ferroelectric ordering, magnetoelectric coupling, and the depolarization energy. A transition of domain growth behaviors from the activated to the nonactivated type was observed when increasing the pulse voltages in BFO (100) films. The activation fields of downward-switched domain growth (~ 0.215 ± 0.25 MV/cm) were lower than those of upward-switched domain growth (~ 0.367 ± 0.01 MV/cm). This asymmetry barrier explains the polarization preference in the as-grown state. Due to the complicated polarization components of the domain wall, new domain is easily to nucleate on the existed domain wall. Under high external voltages, 109゚and 71゚polarization switching along crystal hard axis were formed, which is usually accompanied with the distortion of the adjacent domain walls. The domain structures in equilibrium were determined by the strain between domain walls and the electrostatic energy.
參考文獻
[1] Gene H. Haertling, J. Am. Ceram. Soc. 82, 4 797–818 (1999).
[2] W. Eerenstein, N. D. Mathur and J. F. Scott, Nature 442, 17 (2006).
[3] T. Zhao, A. Scholl, F. Zavaliche, K. Lee, M. Barry, A. Doran, M. P. Cruz, Y. H. Chu, C. Ederer, N. A. Spaldin, R. R. Das, D. M. Kim, S. H. Baek, C. B. Eom and R. Ramesh, Nature Materials 5, 825-829 (2006).
[4] R. Ramesh and Nicola A. Spaldin, Nature Materials 6, 21-29 (2007).
[5] T. Zhao, A. Scholl, F. Zavaliche, H. Zheng, and M. Barry, A. Doran, K. Lee, M. P. Cruz and R. Ramesh, App. Phys. Lett. 90, 123104 (2007).
[6] Ying-Hao Chu, Lane W. Martin, Mikel B. Holcomb, Martin Gajek, Shu-Jen Han, Qing He, Nina Balke, Chan-Ho Yang, Donkoun Lee, Wei Hu, Qian Zhan, Pei-Ling Yang, Arantxa Fraile-Rodríguez, Andreas Scholl, Shan X. Wang and R. Ramesh, Nature Materials 7, 478-482 (2008).
[7] F. Zavaliche, R. R. Das, D. M. Kim, C. B. Eom, S. Y. Yang, P. Shafer, and R. Ramesh, App. Phys. Lett. 87, 182912 (2005).
[8] Ying-Hao Chu, Qian Zhan, Lane W. Martin, Maria P. Cruz, Pei-Ling Yang, Gary W. Pabst, Florin Zavaliche, Seung-Yeul Yang, Jing-Xian Zhang, Long-Qing Chen, Darrell G. Schlom, I.-Nan Lin, Tai-Bor Wu, and Ramamoorthy Ramesh, Adv. Mater. 18, 2307-2311 (2006).
[9] P. Shafer, F. Zavaliche, Y.-H. Chu, P.-L. Yang, M. P. Cruz and R. Ramesh, APPLIED PHYSICS LETTERS 90, 202909 (2007).
[10] S. V. Kalinin, B. J. Rodriguez, S. Jesse, Y. H. Chu, T. Zhao, R. Ramesh, S. Choudhury, L. Q. Chen, E. A. Eliseev and A. N. Morozovska, PNAS 104, 51 (2007).
[11] I. E. Dzyaloshinskii, Sov. Phys. JETP 10, 628 (1959).
[12] I. E. Dzyaloskinskii, Sov. Phys. JETP 11, 708 (1960).
[13] J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig and R. Ramesh, Science 299 14 (2003).
[14] J. B. Neaton, C. Ederer, U. V. Waghmare, N. A. Spaldin and K. M. Rabe1, Phys. Rev. B 71, 014113 (2005).
[15] Claude Ederer and Nicola A. Spaldin, Solid State and Materials Science 9, 128-139 (2005).
[16] H. Zheng et al., Science 303, 661 (2004).
[17] Ce-Wen Nana, M. I. Bichurin, Shuxiang Dongb, D. Viehland and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
[18] T. Tybell, P. Paruch, T. Giamarchi and J.-M. Triscone, Phys. Rev. Lett. 89, 9 (2002).
[19] Nicola A. Hill, J. Phys. Chem. B 104, 6694-6709 (2000).
[20] Srinivasan G, Hayes R and Bichurin M I, Solid State Commun. 128 261 (2003).
[21] Smolenskii G. A. and Chupis I. E., Sov. Phys. Usp.25 475 (1982).
[22] Schmid H., Int. J. Magn. 4 337 (1973).
[23] Hill NA, Filippetti A.J, Magn Mater 976, 242-245 (2002).
[24] Baettig P. and Spaldin N. A., Appl. Phys. Lett. 86 012505 (2005).
[25] Van Aken B. B. and Palstra T. T. M., Phys. Rev. B 69 134113 (2004).
[26] Van Aken B. B., Palstra T. T. M., Filippetti A. and Spaldin N. A., Nat. Mater. 3, 164 (2004).
[27] Goto T., Kimura T., Lawes G., Ramirez A. P. and TokuraY., Phys. Rev. Lett. 92 257201 (2004).
[28] Efremov D. V., van den Brink J. and Khomskii D. I., Nat.Mater. 3 853 (2004).
[29] Robert T. Smith, Gary D. Achenbach, Robert Gerson and W. J. James, J. Appl. Phys. 39, 1 (1968).
[30] Xiaoding Qi, Joonghoe Dho, Rumen Tomov, Mark G. Blamire and Judith L. MacManus-Driscoll, App. Phys. Lett. 86, 062903 (2005).
[31] W. G. Cady, McGraw-Hill, New York (1946) .
[32] Toshio Mitsui, Itaru Tatsuzaki and Eiji Nakamura, Gordon and Breach Science Publishers, New York, (1976).
[33] 吳朗,"電子陶瓷-壓電",全欣資訊圖書股份有限公司(1994).
[34] 張凱勛,成功大學,碩士論文,"鋯鈦酸鉛(Pb(ZrTi)O3,PZT)鐵電材料之奈米電域極化及反轉研究" (2006).
[35] 洪從軒,成功大學,碩士論文,"鎳鐵/鈦酸鍶鋇、鎳鐵/鈦酸鋇雙層膜系統之多鐵性研究"(2007).
[36] 林其叡,成功大學,碩士論文,"多鐵性鐵酸鉍薄膜之電域結構與變域成長"(2008).
[37] 鍾維烈,"鐵電體物理學",科學出版社,(2002).
[38] Kenji Uchino. Ferroelectric Devices, Materials Engineering. Marcel Dekker, 2000, ISBN 0-8247-8133-3.
[39] A. F. Devonshire, Advances in Physics, 3, 10, 85-130 (1954).
[40] B. D. Cullity, S. R. Stock, Prentice Hall, New Jersey (2001).
[41] P. Papon, J. Leblond, P.H.E. Meijer, Springer-Verlag Berlin Heidelberg, French (2006).
[42] “Powder Diffraction File", http://www.icdd.com/
[43] I. Sosnowska, W. Schäfer, W. Kockelmann, K.H. Andersen, I.O. Troyanchuk, Appl. Phys. A 74, S1040-S1042 (2002).
[44] V. R. Palkar, J. John, and R. Pinto, APPLIED PHYSICS LETTERS 80, 9, 1628 (2002).
[45] F. Zavaliche, P. Shafer, R. Ramesh, M. P. Cruz, R. R. Das, D. M. Kim, and C. B. Eom, App. Phys. Lett. , 87, 252902 (2005).
[46] B. J.Rodriguez, R. J. Nemanich, A. Kingon, A. Gruverman, S. V. Kalinin, K. Terabe, X. Y. Liu, and K. Kitamura, App. Phys. Lett. , 86, 012906 (2005).
[47] Y. C. Chen, Q. R. Lin, and Y. H. Chu, App. Phys. Lett. , 94, 122908 (2009).
[48] 陳力俊,"材料電子顯微鏡學",行政院國家科學委員會精密儀器發展中心(2003).
[49] Sergei N. Magonov and Myung-Hwan Whangbo, New York VCH, (1996).
[50] Morris, V. J., Kirby, A. R., Gunning, A. P., “Atomic Force Microscopy for Biologists”, Imperial College Press: London, 1999.
[51] R. Liithi, H. Haefke, K.-P. Meyer, E. Meyer, L. Howald, and H.-J. Gijntherodt, J. Appl. Phys., 74, 12 (1993).
[52] M. Alexe and A. Gruverman, “Nanoscale Characterisation of Ferroelectric Materials-Scanning Probe Microscopy Approach”, Springer, (2004).
[53] M. Abplanalp, L.M. Eng and P. Günter, Appl. Phys. A,66, 231 (1998).
[54] Chia-Hui Chueh, “Studies of PZT thin films by variable-temperature piezoresponse force microscopy”, 國立清華大學物理研究所碩士論文 (2003).
[55] Ying-Hao Chu, Lane W Martin, Mikel B. Holcomb, and Ramamoorthy Ramesh, materialstoday, 10, 1369 7021 (2007).