簡易檢索 / 詳目顯示

研究生: 林至謙
Lin, Zhi-Qian
論文名稱: 基於低氮高爐爐頂氣回噴之新減碳策略應用與投資風險評估
Application of Novel Carbon Reduction Strategies via Top Gas Recycling in Low-Nitrogen Blast Furnaces and Evaluation of Investment Risks
指導教授: 吳煒
Wu, Wei
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 172
中文關鍵詞: Aspen Plus®低氮高爐高爐煉鐵高爐模擬乾式重組碳捕捉氣體回噴焦炭取代率二氧化碳減排Rist diagram
外文關鍵詞: Blast Furnace, Carbon Reduction, Top Gas Recycling, Dry Reforming, Low-Nitrogen Operation, Coke Replacement Ratio, Life Cycle Cost, Monte Carlo Simulation
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 面對鋼鐵產業高碳排放壓力與碳定價政策推進,高爐煉鐵製程之低碳化轉型成為產業升級之關鍵課題。本研究針對傳統高爐運作中碳源過度依賴焦炭的現象,提出三種基於回收氣體循環利用之低碳回噴策略,並建構整合乾式甲烷重組(Dry Reforming of Methane)、化學吸收碳捕捉(MEA-based CO2 Capture)、薄膜空分與熱整合設計等單元的模擬平台,藉以系統性評估其對於碳排放與整體經濟成本之影響。
    本研究以Aspen Plus®為模擬核心,結合非穩態模擬策略與Rist diagram進行氣體還原效率與焦炭取代率(Coke Replacement Ratio)分析,並建立高解析焦炭熱能替代模型。三種回噴策略分別為:(1) 純碳捕捉氣體直接回噴、(2) 爐頂氣乾式改質後回噴、(3) 捕捉與改質整合後回噴。模擬結果指出,Scenario 2(乾式改質氣體回噴)在固定焦炭消耗下限(200 kg/tHM)與火焰溫度約束下,具最佳焦炭替代與減碳潛力,可將年排碳量由5,783.93 ktCO2降至3,532.90 ktCO2,減幅達38.92%。
    進一步結合 Monte Carlo 模擬與 Student-t Copula,建立生命週期總成本(TLCC)分布,並借鏡 Value-at-Risk(VaR) 方法,計算成本高於基準的機率以評估風險。結果顯示 Scenario 2 具有最低 TLCC 均值(17,165 MUSD)、最小風險區間,且超出基準的機率僅 0.334%,展現出優異的經濟穩定性與風險控制能力。

    To address the urgent need for decarbonization in the steel industry, this study proposes and evaluates innovative carbon reduction strategies for blast furnaces (BFs) operating under low-nitrogen conditions. Using Aspen Plus® simulations, three scenarios were designed: CO2 captured reinjection, dry reforming of top gas, and a combined strategy. Each scenario was evaluated based on coke replacement ratio, carbon reduction efficiency, flame temperature sustainability, and energy consumption.

    Scenario 2, which applies dry reforming before reinjection, demonstrated the highest carbon reduction (38.92%) and coke substitution efficiency, despite increased auxiliary power demand. Life cycle cost analysis showed that Scenario 2 had the lowest Total Life Cycle Cost (TLCC), with an estimated expenditure of approximately 17,165 million USD over a 20-year period. Furthermore, Monte Carlo and bootstrap simulations confirmed its superior investment stability, with an 99% probability of outperforming the baseline under economic fluctuations.

    This study provides an integrated approach that combines process simulation, techno-economic evaluation, and risk analysis to support future implementation of low-carbon BF operations. The results highlight dry-reformed top gas injection as the most promising pathway for reducing emissions while maintaining cost competitiveness and operational feasibility.

    摘要I EXTENDED ABSTRACTII 目錄XXV 圖目錄XXVIII 表目錄XXXII 第一章、緒論1 1-1前言1 1-2研究動機4 第二章、簡介及文獻回顧6 2-1高爐簡介6 2-1-1高爐煉鐵基本原理6 2-1-2高爐操作流程與系統7 2-1-3環境影響與減碳技術8 2-2文獻回顧9 2-2-1 結合 Aspen Plus® 與 Rist diagram於高爐穩態與非穩態熱化學模擬之研究進展9 2-2-2 不同回噴氣體對高爐性能與碳排之影響探討11 2-2-3熱風富氧操作對高爐反應與熱平衡之影響12 2-2-4空氣分離膜技術於高爐富氧系統之應用潛力14 2-2-5 MEA 應用於 CO2 捕捉之化學吸收法技術進展16 2-2-6 乾式甲烷重組技術於合成氣製備與碳回收之應用17 第三章、模型建立與模擬方法20 3-1研究流程概述20 3-1-1流程架構圖20 3-1-2各單元模型功能定位與資料流向22 3-1-3模型耦合方式與數據串接25 3-2高爐製程模型建立與驗證29 3-2-1高爐模型基礎理論與反應29 3-2-2焦炭取代率與噴吹氣體影響計算方法39 3-2-3 非穩態模擬策略與回噴氣體組成數據取得44 3-2-4 高爐模型與焦炭取代率計算之驗證47 3-3 改質反應器模型建立與驗證51 3-3-1 改質反應器動力學基礎理論51 3-3-2 改質反應器動力學模型驗證55 3-3-3 改質反應器模擬參數與操作條件設定58 3-4 化學吸收塔與薄膜分離模型59 3-4-1 模型來源與建構邏輯59 3-4-2 化學吸收塔與再生工藝模型60 3-4-3 薄膜 ACM 模型63 3-5 經濟分析建模方法68 3-5-1 經濟成本結構剖析68 3-5-2 成本預測與不確定性模擬77 3-5-3 投資評估模型設計85 第四章、結果與討論87 4-1 回噴策略模擬結果87 4-1-1 Scenario 1:純碳捕捉回噴87 4-1-2 Scenario 2:乾式重組後回噴95 4-1-3 Scenario 3:捕捉與乾式重組整合102 4-1-4 不同情境下原物料投料量與碳排放量111 4-2 經濟分析與投資風險評估結果112 4-2-1 各情境之生命週期總成本分佈112 4-2-2 各情境年度平均總成本拆解116 4-2-3 綜合比較與經濟效益評析119 4-2-4 投資風險評估120 第五章、結論122 參考文獻123 附錄A、薄膜模型ACM程式碼134 附錄B、多目標基因演算法 MATLAB 程式碼137

    I. E. Agency, *Iron and Steel Technology Roadmap*, International Energy Agency, 2020.
    C. S. Corporation, “China Steel Corporation Sustainability Report,” [Online]. Available: https://www.csc.com.tw/csc_e/esg/ov/ov4.html. [Accessed:
    M. Bailera, T. Nakagaki, and R. Kataoka. “Extending the operating line methodology to consider shaft and preheating injections in blast furnaces,” ISIJ International, Vol. 62, No. 12, pp. 2454-2465, 2022.
    K. Higuchi, S. Matsuzaki, K. Saito, and S. Nomura. “Improvement in reduction behavior of sintered ores in a blast furnace through injection of reformed coke oven gas,” ISIJ International, Vol. 60, No. 10, pp. 2218-2227, 2020.
    B. Agún and A. Abánades. “Comprehensive review on dry reforming of methane: Challenges and potential for greenhouse gas mitigation,” International Journal of Hydrogen Energy, Vol. 103, No., pp. 395-414, 2025.
    N. Zecca et al. “DISPLACE post-combustion carbon capture technology-Integration in a steel plant for mitigation of CO2 emissions,” Journal of Cleaner Production, Vol. 491, No., pp. 144739, 2025.
    Z. Fan and S. J. Friedmann. “Low-carbon production of iron and steel: Technology options, economic assessment, and policy,” Joule, Vol. 5, No. 4, pp. 829-862, 2021.
    R. H. Tupkary and V. R. Tupkary. *An Introduction to Modern Iron Making*. Khanna Publishers, 2002.
    A. Ghosh and A. Chatterjee. *Iron making and steelmaking: theory and practice*. PHI Learning Pvt. Ltd., 2008.
    A. Spanlang, W. Wukovits, and B. Weiss. “Entwicklung eines Hochofenmodelles mit Integration der Thermodynamischen Prozessbedingungen mittels Rist Diagramm,” BHM Berg-und Hüttenmännische Monatshefte, Vol. 165, No., pp. 243-247, 2020.
    R. Murai, M. Sato, and T. Ariyama. “Design of innovative blast furnace for minimizing CO2 emission based on optimization of solid fuel injection and top gas recycling,” ISIJ international, Vol. 44, No. 12, pp. 2168-2177, 2004.
    A. Gutierrez-Ortega, M. Montes-Morán, J. Parra, J. Sempere, R. Nomen, and R. Gonzalez-Olmos. “Comparative study of binderless zeolites and carbon molecular sieves as adsorbents for CO2 capture processes,” Journal of CO2 utilization, Vol. 61, No., pp. 102012, 2022.
    IEAGHG, *Iron and Steel CCS Study (Techno-Economics Integrated Steel Mill)*, Cheltenham, UK: IEA Greenhouse Gas R&D Programme, 2013.
    Y.-F. Lu, C.-H. Wang, and Y.-J. Lin. “Enhancing CO2 Capture Efficiency in Vacuum Pressure Swing Adsorption for Blast Furnace Top Gas Recycling Using a Gas Retention Strategy,” Available at SSRN 4956552, Vol., No., pp.
    M. Rasul, B. Tanty, and B. Mohanty. “Modelling and analysis of blast furnace performance for efficient utilization of energy,” Applied thermal engineering, Vol. 27, No. 1, pp. 78-88, 2007.
    K. Afanga, O. Mirgaux, and F. Patisson, "Assessment of top gas recycling blast furnace: A technology to reduce CO2 emissions in the steelmaking industry," in Carbon management technology conference, 2012: CMTC, pp. CMTC-151137-MS.
    A. Rist and N. Meysson. “A dual graphic representation of the blast-furnace mass and heat balances,” Jom, Vol. 19, No. 4, pp. 50-59, 1967.
    A. Spanlang, W. Wukovits, and B. Weiss. “Development of a blast furnace model with thermodynamic process depiction by means of the rist operating diagram,” BHM Berg-Und Hüttenmännische Monatshefte, Vol. 165, No., pp. 243-247, 2020.
    D. Kundrat, T. Miwa, and A. Rist. “Injections in the iron blast furnace: a graphics study by means of the rist operating diagram,” Metallurgical Transactions B, Vol. 22, No., pp. 363-383, 1991.
    I. Matino, V. Colla, and T. A. Branca. “Extension of pilot tests of cyanide elimination by ozone from blast furnace gas washing water through Aspen Plus® based model,” Frontiers of Chemical Science and Engineering, Vol. 12, No., pp. 718-730, 2018.
    C. Li, Q. Xue, Y. Liu, Z. Dong, G. Wang, and J. Wang. “Comprehensive analysis on material and exergy balances of oxygen blast furnace,” Ironmaking & Steelmaking, Vol. 46, No. 8, pp. 761-770, 2019.
    W. Zhang, J. Zhang, Z. Xue, Z. Zou, and Y. Qi. “Unsteady analyses of the top gas recycling oxygen blast furnace,” ISIJ International, Vol. 56, No. 8, pp. 1358-1367, 2016.
    A. Babich. “Blast furnace injection for minimizing the coke rate and CO2 emissions,” Ironmaking & Steelmaking, Vol. 48, No. 6, pp. 728-741, 2021.
    F. Mauret, M. Baniasadi, H. Saxén, A. Feiterna, and S. Hojda. “Impact of hydrogenous gas injection on the blast furnace process: a numerical investigation,” Metallurgical and Materials Transactions B, Vol. 54, No. 4, pp. 2137-2158, 2023.
    C. Yilmaz, J. Wendelstorf, and T. Turek. “Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions,” Journal of Cleaner Production, Vol. 154, No., pp. 488-501, 2017.
    K. Nakano et al. “Development of low carbon blast furnace operation technology by using experimental blast furnace,” ISIJ International, Vol. 62, No. 12, pp. 2424-2432, 2022.
    Z. Zhao, X. Yu, Y. Shen, Y. Li, H. Xu, and Z. Hu. “Model Study of Shaft Injection of Reformed Coke Oven Gas in a Blast Furnace,” Energy & Fuels, Vol. 34, No. 11, pp. 15048-15060, 2020.
    R. Chen, H. Xue, and B. Li. “Comparison of SP, SMAT, SMRT, LSP, and UNSM Based on Treatment Effects on the Fatigue Properties of Metals in the HCF and VHCF Regimes,” Metals, Vol. 12, No. 4, pp. 642, 2022.
    R. Shi, Y. Pei, M. Ren, Z. Xue, X. Li, and H. Liu. “Numerical Study on Combustion Behavior of Tuyere and Raceway in Blast Furnace with Oxygen-Rich Blast and Hydrogen Injection,” Metals, Vol. 15, No. 1, pp. 7, 2024.
    Y. Qie, Q. Lyu, C. Lan, and S. Zhang. “Energy conservation and CO2 abatement potential of a gas-injection blast furnace,” High Temperature Materials and Processes, Vol. 39, No. 1, pp. 96-106, 2020.
    H. Zhou, X. Tian, S. Yao, M. Kou, S. Wu, and Y. Shen. “Numerical Analysis of Blast Furnace with Injection of COREX Export Gas After Removal of CO2,” ISIJ International, Vol. 61, No. 1, pp. 174-181, 2021.
    Á. A. Ramírez-Santos, C. Castel, and E. Favre. “Utilization of blast furnace flue gas: opportunities and challenges for polymeric membrane gas separation processes,” Journal of Membrane Science, Vol. 526, No., pp. 191-204, 2017.
    A. Schreiber, J. Marx, and P. Zapp. “Environmental assessment of a membrane-based air separation for a coal-fired oxyfuel power plant,” Journal of Membrane Science, Vol. 440, No., pp. 122-133, 2013.
    Á. A. Ramírez-Santos, M. Bozorg, B. Addis, V. Piccialli, C. Castel, and E. Favre. “Optimization of multistage membrane gas separation processes. Example of application to CO2 capture from blast furnace gas,” Journal of Membrane Science, Vol. 566, No., pp. 346-366, 2018.
    M. Sarić, J. W. Dijkstra, and Y. C. van Delft. “CO2 abatement in the steel industry through carbon recycle and electrification by means of advanced polymer membranes,” Membranes, Vol. 11, No. 11, pp. 856, 2021.
    D. Polak and M. Szwast. “Analysis of the influence of process parameters on the properties of homogeneous and heterogeneous membranes for gas separation,” Membranes, Vol. 12, No. 10, pp. 1016, 2022.
    李文峰. “以MEA溶液去除煙道氣中二氧化碳之研究,” 國立成功大學碩士論文, Vol., No., pp., 2002.
    M. Wang, A. Lawal, P. Stephenson, J. Sidders, and C. Ramshaw. “Post-combustion CO2 capture with chemical absorption: A state-of-the-art review,” Chemical Engineering Research & Design, Vol. 89, No. 9, pp. 1609-1624, 2011.
    R. E. Tsai. “Mass Transfer Area of Structured Packing,” Ph.D. Dissertation, University of Texas at Austin, Vol., No., pp., 2010.
    Y. Y. Xiaomei Wu, Zhen Qin, Zaoxiao Zhang. “The Advances of Post-combustion CO2 Capture with Chemical Solvents: Review and Guidelines,” Energy Procedia, Vol. 63, No., pp. 1339–1346, 2014.
    M. W. Tohid N. Borhani. “Role of solvents in CO2 capture processes: The review of selection and design methods,” Renewable and Sustainable Energy Reviews, Vol. 114, No., pp. 109299, 2019.
    A. S. Shervan Babamohammadi, Mohamed Kheireddine Aroua. “A review of CO2 capture by absorption in ionic liquid-based solvents,” Rev Chem Eng, Vol. 31(4), No., pp. 383–412, 2015.
    W. C. . and et al. “Recent advances during CH4 dry reforming for syngas production: A mini review,” International Journal of Hydrogen Energy, Vol., No., pp., 2021.
    D. A. Gopaul S.G. “Dry reforming of multiple biogas types for syngas production simulated using Aspen Plus: The use of partial oxidation and hydrogen combustion to achieve thermo-neutrality,” International Journal of Hydrogen Energy, Vol., No., pp., 2015.
    A. S. D. . and et al. “Reduction of CO2 Emission from Off‐Gases of Steel Industry by Dry Reforming of Methane,” Angewandte Chemie International Edition, Vol., No., pp., 2021.
    J. Y. B. . and et al. “A simulation model for ruthenium-catalyzed dry reforming of methane at different temperatures and gas compositions,” International Journal of Hydrogen Energy, Vol., No., pp., 2024.
    C. X. . and et al. “CH4 dry reforming in fluidized-bed plasma reactor enabling enhanced plasma-catalyst coupling,” Journal of CO2 Utilization, Vol., No., pp., 2021.
    Y.-M. Chen, "設計與最適化富氫氣體噴吹之高爐煉鐵製程," Design and Optimization of Blast Furnace Ironmaking Process with Hydrogen-Rich Gas Injection, National Cheng Kung University, Master's Thesis, 2024. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/detail/2ef19e542866bdf71adf5920c33f020c/
    G. Bonnivard and A. Rist. “Étude expérimentale de la réduction d'agglomérés de minerais de fer par un gaz a contre-courant,” Revue de Métallurgie, Vol. 59, No. 5, pp. 401-415, 1962.
    M. Bailera, T. Nakagaki, and R. Kataoka. “Revisiting the Rist diagram for predicting operating conditions in blast furnaces with multiple injections,” Open Research Europe, Vol. 1, No., pp. 141, 2021.
    V. Shatokha. “Slag parameters and sulphur partition in blast furnace hearth: Ukrainian case and international comparison,” Ironmaking & Steelmaking, Vol. 49, No. 1, pp. 60-69, 2022.
    Y. Niwa, T. Sumigama, A. Maki, H. Ito, H. Inoue, and T. Tamura. “Blast furnace operation for low silicon content at Fukuyama No. 5 blast furnace,” ISIJ international, Vol. 31, No. 5, pp. 487-493, 1991.
    B. Pandey and U. Yadav. “Production of low silicon hot metal: theory and practice,” Ironmaking & steelmaking, Vol. 25, No. 3, pp. 233, 1998.
    范和華, 何波, and 吳藝鵬. “鐵水中鈦含量及其還原率影響因素分析,” 山東冶金, Vol. 40, No. 1, pp. 36-38, 2018.
    G. Volovik, V. Kotov, and P. Kalashnyuk. “CARBURIZATION OF IRON IN BLAST-FURNACE SMELTING,” STEEL IN THE USSR, Vol. 21, No. 6, pp. 247-248, 1991.
    R. J. Nightingale. “The development and application of hearth voidage estimation and deadman cleanliness index for the control of blast furnace hearth operation,” Vol., No., pp., 2000.
    F. Neumann, H. Schenck, and W. Patterson. “Eisen-Kohlenstoff-Legierungen in Thermodynamischer Betrachtung,” Giesserei. Tech.-Wissen, Vol. 23, No., pp. 1217-1246, 1959.
    K. Raipala, "On hearth phenomena and hot metal carbon content in blast furnace," Helsinki University of Technology publications in materials science and metallurgy, Helsinki University of Technology, Department of Materials Science and Rock Engineering, Espoo, Finland, Doctoral Thesis, 2003. [Online]. Available: https://aaltodoc.aalto.fi/items/6dc82a78-7e4b-4793-a730-fc2288fda8c6
    D. Wu, P. Zhou, and C. Q. Zhou. “Numerical study on pulverized coal combustion in a raceway from the viewpoint of coal plume,” Energy Procedia, Vol. 158, No., pp. 5517-5522, 2019.
    A. Rist and N. Meysson. “Recherche graphique de la mise au mille minimale du haut fourneau a faible température de vent,” Revue de Métallurgie, Vol. 61, No. 2, pp. 121-146, 1964.
    S. National Institute of and Technology. “NIST Chemistry WebBook: Gas Phase Thermochemical Data,” Vol., No., pp., 1998.
    A. A. Kal'ko, E. A. Volkov, O. A. Kal'ko, and S. N. Khreeva. “Operation of Blast Furnaces at Low Raceway Adiabatic Flame Temperature,” Metallurgist, Vol. 67, No. 5-6, pp. 569-578, 2023.
    T.-L. Guo, M.-S. Chu, Z.-G. Liu, J. Tang, and J.-I. Yagi. “Mathematical Modeling and Exergy Analysis of Blast Furnace Operation With Natural Gas Injection,” Steel Research International, Vol. 84, No. 4, pp. 333-343, 2012.
    V. Shatokha. “Injection of Hydrogenous Gases into the Blast Furnace Tuyeres for Reducing CO2 Emissions: A Review,” ISIJ International, Vol. 64, No., pp., 2024.
    C. Kamijo et al. “Influence of Large Amount of Hydrogen Containing Gaseous Reductant Injection on Carbon Consumption and Operation Conditions of Blast Furnace - Development of Low Carbon Blast Furnace Operation Technology by using Experimental Blast Furnace: part II,” ISIJ International, Vol. 62, No. 12, pp. 2433-2441, 2022.
    W. Paul. “Coke oven gas injection into blast furnace,” Vol., No., pp.
    Worldsteel. “CO2 reduction by means of coke oven gas co-injection in blast furnace,” Vol., No., pp., 2022.
    U. S. E. P. A. O. o. A. Q. Planning, Standards, P. Sector, and D. Programs, *Available and Emerging Technologies for Reducing Greenhouse Gas Emissions from the Iron and Steel Industry*,
    Y. Benguerba, M. Virginie, C. Dumas, and B. Ernst. “Methane dry reforming over Ni-Co/Al2O3: kinetic modelling in a catalytic fixed-bed reactor,” International Journal of Chemical Reactor Engineering, Vol. 15, No. 6, pp. 20160170, 2017.
    B. Lee, H. Kim, H. Lee, M. Byun, W. Won, and H. Lim. “Technical and economic feasibility under uncertainty for methane dry reforming of coke oven gas as simultaneous H2 production and CO2 utilization,” Renewable and Sustainable Energy Reviews, Vol. 133, No., pp. 110056, 2020.
    J. Zhang, H. Wang, and A. K. Dalai. “Kinetic studies of carbon dioxide reforming of methane over Ni− Co/Al− Mg− O bimetallic catalyst,” Industrial & Engineering Chemistry Research, Vol. 48, No. 2, pp. 677-684, 2009.
    J. Richardson and S. Paripatyadar. “Carbon dioxide reforming of methane with supported rhodium,” Applied Catalysis, Vol. 61, No. 1, pp. 293-309, 1990.
    J.-W. Snoeck, G. Froment, and M. Fowles. “Filamentous carbon formation and gasification: thermodynamics, driving force, nucleation, and steady-state growth,” Journal of Catalysis, Vol. 169, No. 1, pp. 240-249, 1997.
    J.-W. Snoeck, G. Froment, and M. Fowles. “Steam/CO2 reforming of methane. Carbon filament formation by the Boudouard reaction and gasification by CO2, by H2, and by steam: kinetic study,” Industrial & engineering chemistry research, Vol. 41, No. 17, pp. 4252-4265, 2002.
    C. Tsang and W. Streett. “Phase equilibria in the H2 CO system at temperatures from 70 to 125 K and pressures to 53 MPa,” Fluid Phase Equilibria, Vol. 6, No. 3-4, pp. 261-273, 1981.
    C. Tsang, P. Clancy, J. Calado, and W. Streett. “Phase equilibria in the H2/CH4 system at temperatures from 92.3 to 180.0 K and pressures to 140 MPa,” Chemical Engineering Communications, Vol. 6, No. 6, pp. 365-383, 1980.
    L. F. Souza, S. Z. Al Ghafri, and J. M. Trusler. “Measurement and modelling of the vapor–liquid equilibrium of (CO2+ CO) at temperatures between (218.15 and 302.93) K at pressures up to 15 MPa,” The Journal of Chemical Thermodynamics, Vol. 126, No., pp. 63-73, 2018.
    J. Davalos, W. R. Anderson, R. E. Phelps, and A. J. Kidnay. “Liquid-vapor equilibria at 250.00. deg. K for systems containing methane, ethane, and carbon dioxide,” Journal of Chemical and Engineering Data, Vol. 21, No. 1, pp. 81-84, 1976.
    B.-Y. Chou and 周邦彥, "Techno-economic Analysis of a Class of Coal-fired Power Plants with New Chemical Absorption Systems," National Cheng Kung University, Tainan, Taiwan, 2025. [Online]. Available: https://thesis.lib.ncku.edu.tw/thesis/detail/6c7ac3709cf10cc8431090a25dca84c0/
    中華民國環境保護署, *固定污染源空氣污染物排放標準第二條、第三條修正總說明及條文對照表:112年6月14日修正*, 臺北: 環境保護署, 2023.
    Y. Zhang and C.-C. Chen. “Modeling CO2 absorption and desorption by aqueous monoethanolamine solution with Aspen rate-based model,” Energy Procedia, Vol. 37, No., pp. 1584-1596, 2013.
    S. Bishnoi and G. T. Rochelle. “Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility,” Chemical engineering science, Vol. 55, No. 22, pp. 5531-5543, 2000.
    C. Madeddu, M. Errico, and R. Baratti. *CO2 capture by reactive absorption-stripping: modeling, analysis and design*. Springer, 2018.
    張峰林, "燃煤火力發電廠燃燒後薄膜分離碳捕捉程序," 2016.
    T. Merkel et al., *Pilot testing of a membrane system for postcombustion CO2 capture*, Membrane Technology And Research, Incorporated, Newark, CA (United States), 2015.
    S. S. Hosseini, M. R. Omidkhah, A. Z. Moghaddam, V. Pirouzfar, W. B. Krantz, and N. R. Tan. “Enhancing the properties and gas separation performance of PBI–polyimides blend carbon molecular sieve membranes via optimization of the pyrolysis process,” Separation and Purification Technology, Vol. 122, No., pp. 278-289, 2014.
    L. Zhao, E. Riensche, L. Blum, and D. Stolten. “Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses,” Journal of membrane science, Vol. 359, No. 1-2, pp. 160-172, 2010.
    W. D. Seider, D. R. Lewin, J. Seader, S. Widagdo, R. Gani, and K. M. Ng. *Product and process design principles: synthesis, analysis and evaluation*. John Wiley & Sons, 2016.
    R. Turton, R. C. Bailie, W. B. Whiting, and J. A. Shaeiwitz. *Analysis, synthesis and design of chemical processes*. Pearson Education, 2008.
    M. S. Peters and K. D. Timmerhaus. *Plant design and economics for chemical engineers*. McGraw-Hill International, 2018.
    J. A. Shaeiwitz and R. Turton. *Chemical process equipment design*. Prentice Hall, 2017.
    M. F. Ashby. “Materials selection in mechanical design,” Metallurgia Italiana, Vol. 86, No., pp. 475-475, 1994.
    E. F. Megyesy. “Pressure vessel handbook,” Vol., No., pp., 1973.
    T. Hicks and N. Chopey. *Handbook of chemical engineering calculations*. McGraw Hill Professional, 2012.
    G. Rothenberg. *Catalysis: concepts and green applications*. John Wiley & Sons, 2017.
    E. Bausbacher and R. Hunt. “Process plant layout and piping design,” (No Title), Vol., No., pp., 1993.
    R. E. Treybal. *Mass-Transfer Operations*. McGraw-Hill, 1980.
    J. M. Coulson and J. F. Richardson. *Chemical Engineering*. Butterworth-Heinemann, 2001.
    J. D. Seader and E. J. Henley. *Separation Process Principles*. John Wiley & Sons, 1998.
    R. H. Perry and D. W. Green. *Perry's Chemical Engineers' Handbook*. McGraw-Hill, 1997.
    *GPSA Engineering Data Book*. Gas Processors Suppliers Association, 2004.
    E. E. Ludwig. *Applied Process Design for Chemical and Petrochemical Plants*. Gulf Publishing, 2001.
    R. E. Tsai. “Mass transfer area of structured packing,” Vol., No., pp., 2010.
    K. Ramasubramanian, H. Verweij, and W. W. Ho. “Membrane processes for carbon capture from coal-fired power plant flue gas: A modeling and cost study,” Journal of membrane science, Vol. 421, No., pp. 299-310, 2012.
    M. Micari and K. V. Agrawal. “Oxygen enrichment of air: Performance guidelines for membranes based on techno-economic assessment,” Journal of Membrane Science, Vol. 641, No., pp. 119883, 2022.
    S. A. Zaman and S. Ghosh. “Thermo-economic and environmental performance analyses of a biomass-based carbon negative system integrating externally fired gas turbine and molten carbonate fuel cell,” Energy Conversion and Management: X, Vol. 14, No., pp. 100187, 2022.
    J. Song et al. “Economic Analysis of an Integrated Steel Plant Equipped with a Blast Furnace or Oxygen Blast Furnace,” Sustainability, Vol. 15, No. 15, pp. 11824, 2023.
    “焦炭主力合約收盤價格 (Coke Futures Closing Prices),” Vol., No., pp., 2025.
    “鐵礦石主力合約收盤價格 (Iron Ore Futures Closing Prices),” Vol., No., pp., 2025.
    “LQM24 Futures Price History,” Vol., No., pp., 2025.
    T. Ministry of Economic Affairs. “Industrial Production Index (Monthly),” Vol., No., pp., 2025.
    T. Bank of. “USD Exchange Rate (June 2024),” Vol., No., pp., 2024.
    BusinessAnalytiq. “Monoethanolamine Price Index,” Vol., No., pp., 2025.
    Z. Fonyó, E. Rév, Z. Szitkai, M. Emtir, and P. Mizsey. “Energy savings of integrated and coupled distillation systems,” Computers & Chemical Engineering, Vol. 23, No., pp. S89-S92, 1999.
    E. Trading. “Cobalt Commodity Historical Data,” Vol., No., pp., 2025.
    G. Mantulet, A. Peffen, and S. Cail. “Carbon price forecast under the EU ETS,” Vol., No., pp., 2023.
    Rebecca. “2024全球碳市場全方位解析:政策、趨勢與企業應對策略,” Vol., No., pp., 2025.
    B. World. “Commodity Markets Outlook: October 2024,” Vol., No., pp., 2024.
    A. International Energy. “Coal 2024: Analysis and forecast to 2027,” Vol., No., pp., 2024.
    A. International Energy. “World Energy Outlook 2023,” Vol., No., pp., 2023.
    C. Taiwan Power. Annual electricity sales report. [Online]. Available: https://www.taipower.com.tw
    Dataintelo. “Monoethylamine (MEA) Market Report,” Vol., No., pp., 2023.
    I. Future Market. “Cooling Water Treatment Chemicals Market Report,” Vol., No., pp., 2024.
    S. Global Market. “R134A Refrigerant Market Forecast,” Vol., No., pp., 2024.
    I. Global Growth. “Industrial Water Management Market Report,” Vol., No., pp., 2024.
    E. London Metal. “London Metal Exchange | The global centre for industrial metals,” Vol., No., pp.
    孫文臨, "〖大旱之後〗需水無度的真相 2036年產業用水增超過一座曾文水庫," ed, 2021.
    Z. Guohai. “Simulation of the Effects of Hydrogen Injection on the Main Indicators of Blast Furnace and Carbon Dioxide Emission Reduction by Zero-Dimensional Model,” Materials Research and Development, Vol. 1, No. 1, pp. 25, 2022.
    R. Janjua and F. Maciel. “CO₂ Data Collection User Guide, Version 11,” Vol., No., pp., 2024.
    M. o. E. A. T. Energy Administration. “112年度電力排碳係數,” Vol., No., pp., 2024.
    P. Jorion. *Value at risk: the new benchmark for managing financial risk*. McGraw-Hill New York, 1997.
    R. Votto, L. L. Ho, and F. Berssaneti. “Earned Duration Management Control Charts: Role of Control Limit Width Definition for Construction Project Duration Monitoring,” Journal of Construction Engineering and Management, Vol. 147, No. 9, pp. 04021108, 2021.

    無法下載圖示 校內:2030-07-01公開
    校外:2030-07-01公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE