簡易檢索 / 詳目顯示

研究生: 吳佳紋
Wu, Chia-Wen
論文名稱: 介白素-1β誘發的公鼠與母鼠胸主動脈血管平滑肌細胞的老化
Interleukin-1β-induced cellular senescence of vascular smooth muscle cells derived from thoracic aortas of male and female rats
指導教授: 江美治
Jiang, Meei-Jyh
學位類別: 碩士
Master
系所名稱: 醫學院 - 細胞生物與解剖學研究所
Institute of Cell Biology and Anatomy
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 49
中文關鍵詞: 介白素-1β細胞老化血管平滑肌細胞去氧核醣核酸損傷NADPH氧化酶活性氧分子
外文關鍵詞: Interleukin-1β, cellular senescence, vascular smooth muscle cells, DNA damage, NADPH oxidase, reactive oxygen species
相關次數: 點閱:85下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 血管老化與發炎是導致心血管疾病發展與進程的主要因子。越來越多證據指出細胞老化參與在個體老化與老化相關的疾病,其中包含動脈粥狀硬化與心臟肥大。介白素-1β(Interleukin-1β,IL-1β)為一種促進發炎的細胞激素,在心血管疾病的發生與復發中扮演著重要的角色。我們實驗室先前的研究發現,IL-1β會透過活性氧分子(reactive oxygen species)的生成來誘導血管平滑肌細胞的老化。而最近的一份報告指出,在男性顯著多於女性的川崎氏症病人中,IL-1β在其血管炎的性別差異扮演主要的角色。本研究的目的在探討IL-1β所誘導的胸主動脈血管平滑肌細胞(TA-VSMCs)老化是否存在性別所造成的差異以及其潛在機制。我們以兩種細胞老化的指標蛋白,p16和p21,來偵測源自於雄性與雌性大鼠TA-VSMCs的老化。IL-1β能誘導p16和p21的表現,在雄性TA-VSMCs中以0.1和1 ng/mL的劑量效果最顯著,而雌性TA-VSMCs則以1和10 ng/mL為顯著。我們進一步探討IL-1β受體訊號傳導分子的蛋白表現量在雄性與雌性TA-VSMCs中是否有所不同。在雄性TA-VSMCs中,以1 ng/mL IL-1β處理,IL-1第一型受體(IL-1R1)表現顯著上升,而雌性TA-VSMCs中則沒有顯著變化。另外,IL-1受體拮抗劑(IL-1RA)的表現不論在雄性或雌性TA-VSMCs中皆不受影響。IL-1β誘導的去氧核醣核酸損傷在雄性和雌性TA-VSMCs中皆能透過組蛋白H2A.X的第139位點的絲氨酸磷酸化(ƳH2AX)被偵測到。同樣地,以0.1和1 ng/mL IL-1β處理雄性TA-VSMCs,及以1和10 ng/mL IL-1β處理雌性TA-VSMCs,皆能透過二氫乙啶(dihydroethidium)偵測到細胞內的活性氧分子含量上升。在血管平滑肌細胞中,NADPH氧化酶1(NOX1)和NOX4為生成活性氧分子的主要酵素,因此我們也偵測IL-1β對其表現量的影響。以10 ng/mL IL-1β處理雄性TA-VSMCs,NOX4的表現量上升,但在雌性TA-VSMCs中則無顯著變化。另外,在雄性與雌性TA-VSMCs中,IL-1β對NOX1的表現量皆無影響。總結上述的結果,IL-1β所誘導的大鼠TA-VSMCs的細胞老化可能有輕微的性別差異。IL-1β對IL-1R1與NOX4表現量的刺激作用只在公鼠的血管平滑肌細胞中偵測到,但其角色有待進一步探討。

    Vascular aging and inflammation are major contributors to the development and progression of cardiovascular disease. Emerging evidence shows that cellular senescence participates in aging and age-associated diseases, including atherosclerosis and cardiac hypertrophy. Interleukin-1β (IL-1β), a pro-inflammatory cytokine, plays a vital role in occurrence of cardiovascular events and relapses of cardiovascular diseases in human. Previous studies in our laboratory showed that IL-1β induces cellular senescence of vascular smooth muscle cells (VSMCs) in a reactive oxygen species (ROS)-dependent manner. A recent report indicates that IL-1β plays a central role in sex-based differences of vasculitis in Kawasaki disease, which is more prevalent in males than females. This study aimed to determine whether IL-1β-induced cellular senescence of VSMCs displays gender difference and the underlying mechanisms. Cellular senescence was assessed with the expression of two biomarkers, p16 and p21, in VSMCs derived from thoracic aortas (TA-VSMCs) of male and female rats. IL-1β-induced up-regulation of p16 and p21 was most prominent at concentrations of 0.1 and 1 ng/mL in male TA-VSMCs and of 1 and 10 ng/mL in female TA-VSMCs. We next examined whether IL-1β receptor signaling molecules differ in male and female TA-VSMCs. The expression of IL-1 receptor type I (IL-1R1) was up-regulated with IL-1β at 1 ng/mL in male TA-VSMCs, but not in female TA-VSMCs. In contrast, the expression of IL-1 receptor antagonist (IL-1RA) was not affected. Treatment with IL-1β induced DNA damage detected with Ser139 phosphorylation of histone H2A.X (ϒH2AX) in both male and female TA-VSMCs. Similarly, cellular ROS levels assessed with dihydroethidium increased at 0.1 and 1 ng/mL IL-1β in male TA-VSMCs and at 1 and 10 ng/mL IL-1β in female TA-VSMCs. Because NADPH oxidase (NOX) 1 and NOX4 are major enzymes catalyzing ROS production in VSMCs, we examined whether IL-1β differentially affects their expression. The expression of NOX4 was up-regulated in male TA-VSMCs treated with 10 ng/mL IL-1β, but no effect was detected in female TA-VSMCs. In addition, no effect on NOX1 expression was detected in both male and female TA-VSMCs. In summary, an apparent gender difference was detected in IL-1β-induced cellular senescence of TA-VSMCs derived from male and female rats. IL-1β up-regulates IL-1R1 and NOX4 in male but not female TA-VSMCs, and potential roles need further investigation.

    中文摘要-I Abstract-III Introduction-1 Aging and cardiovascular diseases-1 Cellular senescence-2 Mechanisms of Cellular senescence-4 DNA damage-4 Oxidative stress-4 NADPH oxidase-5 Sex and cardiovascular diseases-6 Inflammation and Interleukin-1β-7 Aim of this study-10 Materials-11 Methods-24 Results-28 Discussion-30 References-33 Figures-42

    1. Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, Ahmed M, Aksut B, Alam T, Alam K, Alla F, Alvis-Guzman N, Amrock S, Ansari H, Ärnlöv J, Asayesh H, Atey TM, Avila-Burgos L, Awasthi A, Banerjee A, Barac A, Bärnighausen T, Barregard L, Bedi N, Belay Ketema E, Bennett D, Berhe G, Bhutta Z, Bitew S, Carapetis J, Carrero JJ, Malta DC, Castañeda-Orjuela CA, Castillo-Rivas J, Catalá-López F, Choi J-Y, Christensen H, Cirillo M, Cooper L, Jr., Criqui M, Cundiff D, Damasceno A, Dandona L, Dandona R, Davletov K, Dharmaratne S, Dorairaj P, Dubey M, Ehrenkranz R, El Sayed Zaki M, Faraon EJA, Esteghamati A, Farid T, Farvid M, Feigin V, Ding EL, Fowkes G, Gebrehiwot T, Gillum R, Gold A, Gona P, Gupta R, Habtewold TD, Hafezi-Nejad N, Hailu T, Hailu GB, Hankey G, Hassen HY, Abate KH, Havmoeller R, Hay SI, Horino M, Hotez PJ, Jacobsen K, James S, Javanbakht M, Jeemon P, John D, Jonas J, Kalkonde Y, Karimkhani C, Kasaeian A, Khader Y, Khan A, Khang Y-H, Khera S, Khoja AT, Khubchandani J, Kim D, Kolte D, Kosen S, Krohn KJ, Kumar GA, Kwan GF, Lal DK, Larsson A, Linn S, Lopez A, Lotufo PA, El Razek HMA, Malekzadeh R, Mazidi M, Meier T, Meles KG, Mensah G, Meretoja A, Mezgebe H, Miller T, Mirrakhimov E, Mohammed S, Moran AE, Musa KI, Narula J, Neal B, Ngalesoni F, Nguyen G, Obermeyer CM, Owolabi M, Patton G, Pedro J, Qato D, Qorbani M, Rahimi K, Rai RK, Rawaf S, Ribeiro A, Safiri S, Salomon JA, Santos I, Santric Milicevic M, Sartorius B, Schutte A, Sepanlou S, Shaikh MA, Shin M-J, Shishehbor M, Shore H, Silva DAS, Sobngwi E, Stranges S, Swaminathan S, Tabarés-Seisdedos R, Tadele Atnafu N, Tesfay F, Thakur JS, Thrift A, Topor-Madry R, Truelsen T, Tyrovolas S, Ukwaja KN, Uthman O, Vasankari T, Vlassov V, Vollset SE, Wakayo T, Watkins D, Weintraub R, Werdecker A, Westerman R, Wiysonge CS, Wolfe C, Workicho A, Xu G, Yano Y, Yip P, Yonemoto N, Younis M, Yu C, Vos T, Naghavi M and Murray C. Global, Regional, and National Burden of Cardiovascular Diseases for 10 Causes, 1990 to 2015. J Am Coll Cardiol. 2017;70:1-25.
    2. Nowbar Alexandra N, Gitto M, Howard James P, Francis Darrel P and Al-Lamee R. Mortality From Ischemic Heart Disease. Circ Cardiovasc Qual Outcomes. 2019;12:e005375.
    3. Kovacic JC, Moreno P, Hachinski V, Nabel EG and Fuster V. Cellular senescence, vascular disease, and aging: Part 1 of a 2-part review. Circulation. 2011;123:1650-60.
    4. Rodgers JL, Jones J, Bolleddu SI, Vanthenapalli S, Rodgers LE, Shah K, Karia K and Panguluri SK. Cardiovascular Risks Associated with Gender and Aging. J Cardiovasc Dev Dis. 2019;6:19.
    5. Laurent S, Alivon M, Beaussier H and Boutouyrie P. Aortic stiffness as a tissue biomarker for predicting future cardiovascular events in asymptomatic hypertensive subjects. Ann Med. 2012;44:S93-S97.
    6. Najjar SS, Scuteri A and Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension. 2005;46:454-62.
    7. Lee S-J and Park S-H. Arterial ageing. Korean Circ J. 2013;43:73-79.
    8. Shay JW and Wright WE. Hayflick, his limit, and cellular ageing. Nat Rev Mol Cell Biol. 2000;1:72-76.
    9. Kuilman T, Michaloglou C, Mooi WJ, Peeper DSJG and development. The essence of senescence. 2010;24:2463-2479.
    10. Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends Cell Biol. 2001;11:S27-S31.
    11. Collado M and Serrano M. Senescence in tumours: evidence from mice and humans. NatRev Cancer. 2010;10:51.
    12. Gil J and Peters G. Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol. 2006;7:667-77.
    13. Kim WY and Sharpless NE. The regulation of INK4/ARF in cancer and aging. Cell. 2006;127:265-75.
    14. Coppe JP, Desprez PY, Krtolica A and Campisi J. The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99-118.
    15. Kuilman T and Peeper DS. Senescence-messaging secretome: SMS-ing cellular stress. Nat Rev Cancer. 2009;9:81-94.
    16. Liu D and Hornsby PJ. Senescent human fibroblasts increase the early growth of xenograft tumors via matrix metalloproteinase secretion. Cancer Res. 2007;67:3117-26.
    17. Bavik C, Coleman I, Dean JP, Knudsen B, Plymate S and Nelson PS. The gene expression program of prostate fibroblast senescence modulates neoplastic epithelial cell proliferation through paracrine mechanisms. Cancer Res. 2006;66:794-802.
    18. Coppe JP, Patil CK, Rodier F, Krtolica A, Beausejour CM, Parrinello S, Hodgson JG, Chin K, Desprez PY and Campisi J. A human-like senescence-associated secretory phenotype is conserved in mouse cells dependent on physiological oxygen. PLoS One. 2010;5:e9188.
    19. Yang G, Rosen DG, Zhang Z, Bast RC, Jr., Mills GB, Colacino JA, Mercado-Uribe I and Liu J. The chemokine growth-regulated oncogene 1 (Gro-1) links RAS signaling to the senescence of stromal fibroblasts and ovarian tumorigenesis. Proc Natl Acad Sci U S A. 2006;103:16472-7.
    20. Coppe JP, Kauser K, Campisi J and Beausejour CM. Secretion of vascular endothelial growth factor by primary human fibroblasts at senescence. J Biol Chem. 2006;281:29568-74.
    21. Childs BG, Durik M, Baker DJ and van Deursen JM. Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med. 2015;21:1424-35.
    22. van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509:439-46.
    23. da Silva PFL, Ogrodnik M, Kucheryavenko O, Glibert J, Miwa S, Cameron K, Ishaq A, Saretzki G, Nagaraja-Grellscheid S, Nelson G and von Zglinicki T. The bystander effect contributes to the accumulation of senescent cells in vivo. Aging Cell. 2019;18:e12848.
    24. Contrepois K, Coudereau C, Benayoun BA, Schuler N, Roux PF, Bischof O, Courbeyrette R, Carvalho C, Thuret JY, Ma Z, Derbois C, Nevers MC, Volland H, Redon CE, Bonner WM, Deleuze JF, Wiel C, Bernard D, Snyder MP, Rube CE, Olaso R, Fenaille F and Mann C. Histone variant H2A.J accumulates in senescent cells and promotes inflammatory gene expression. Nat Commun. 2017;8:14995.
    25. Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, Stojic L, Rayner TF, Stubbington MJT, Teichmann SA, de la Roche M, Marioni JC and Odom DT. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;355:1433-1436.
    26. Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A, Windheim J, Tsoory M, Schirmbeck R, Amit I, Geiger H and Krizhanovsky V. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun. 2018;9:5435-5435.
    27. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E and Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev Cell. 2014;31:722-33.
    28. Jun J-I and Lau LF. The matricellular protein CCN1 induces fibroblast senescence and restricts fibrosis in cutaneous wound healing. Nat Cell Biol. 2010;12:676.
    29. Bergmann A and Steller H. Apoptosis, stem cells, and tissue regeneration. Sci Signal. 2010;3:re8.
    30. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, Onken JL, Johnson KO, Verzosa GC, Langhi LGP, Weigl M, Giorgadze N, LeBrasseur NK, Miller JD, Jurk D, Singh RJ, Allison DB, Ejima K, Hubbard GB, Ikeno Y, Cubro H, Garovic VD, Hou X, Weroha SJ, Robbins PD, Niedernhofer LJ, Khosla S, Tchkonia T and Kirkland JL. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246-1256.
    31. Kluge MA, Fetterman JL and Vita JA. Mitochondria and endothelial function. Circul Res. 2013;112:1171-1188.
    32. D'Autreaux B and Toledano MB. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat Rev Mol Cell Biol. 2007;8:813-24.
    33. Phaniendra A, Jestadi DB and Periyasamy L. Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry : IJCB. 2015;30:11-26.
    34. Bhattacharyya A, Chattopadhyay R, Mitra S and Crowe SE. Oxidative stress: an essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol Rev. 2014;94:329-354.
    35. Nita M and Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev. 2016;2016:3164734-3164734.
    36. Davalli P, Mitic T, Caporali A, Lauriola A and D'Arca D. ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. Oxid Med Cell Longev. 2016;2016:3565127-3565127.
    37. Allen RG, Tresini M, Keogh BP, Doggett DL and Cristofalo VJ. Differences in electron transport potential, antioxidant defenses, and oxidant generation in young and senescent fetal lung fibroblasts (WI-38). J Cell Physiol. 1999;180:114-22.
    38. Ogrodnik M, Salmonowicz H and Gladyshev VN. Integrating cellular senescence with the concept of damage accumulation in aging: Relevance for clearance of senescent cells. Aging Cell. 2019;18:e12841-e12841.
    39. Cosentino F, Francia P, Camici GG, Pelicci PG, Luscher TF and Volpe M. Final common molecular pathways of aging and cardiovascular disease: role of the p66Shc protein. Arterioscler Thromb Vasc Biol. 2008;28:622-8.
    40. Furumoto K, Inoue E, Nagao N, Hiyama E and Miwa N. Age-dependent telomere shortening is slowed down by enrichment of intracellular vitamin C via suppression of oxidative stress. Life Sci. 1998;63:935-48.
    41. Panday A, Sahoo MK, Osorio D and Batra S. NADPH oxidases: an overview from structure to innate immunity-associated pathologies. Cell Mol Immunol. 2015;12:5-23.
    42. Burtenshaw D, Hakimjavadi R, Redmond EM and Cahill PA. Nox, Reactive Oxygen Species and Regulation of Vascular Cell Fate. Antioxidants (Basel, Switzerland). 2017;6:90.
    43. Rada B and Leto TL. Oxidative innate immune defenses by Nox/Duox family NADPH oxidases. Contrib Microbiol. 2008;15:164-187.
    44. Segal AW. The function of the NADPH oxidase of phagocytes and its relationship to other NOXs in plants, invertebrates, and mammals. Int J Biochem Cell Biol. 2008;40:604-618.
    45. Alexander MR, Moehle CW, Johnson JL, Yang Z, Lee JK, Jackson CL and Owens GK. Genetic inactivation of IL-1 signaling enhances atherosclerotic plaque instability and reduces outward vessel remodeling in advanced atherosclerosis in mice. J Clin Invest. 2012;122:70-79.
    46. Deliyanti D, Alrashdi Saeed F, Touyz Rhian M, Kennedy Christopher R, Jha Jay C, Cooper Mark E, Jandeleit-Dahm Karin A and Wilkinson-Berka Jennifer L. Nox (NADPH Oxidase) 1, Nox4, and Nox5 Promote Vascular Permeability and Neovascularization in Retinopathy. Hypertension. 2020;75:1091-1101.
    47. Lee MY, San Martin A, Mehta PK, Dikalova AE, Garrido AM, Datla SR, Lyons E, Krause K-H, Banfi B, Lambeth JD, Lassègue B and Griendling KK. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation. Atertio Thromb Vasc Biol. 2009;29:480-487.
    48. Tsai IC, Pan ZC, Cheng HP, Liu CH, Lin BT and Jiang MJ. Reactive oxygen species derived from NADPH oxidase 1 and mitochondria mediate angiotensin II-induced smooth muscle cell senescence. J Mol Cell Cardiol. 2016;98:18-27.
    49. Amanso AM and Griendling KK. Differential roles of NADPH oxidases in vascular physiology and pathophysiology. Front Biosci (Schol Ed). 2012;4:1044-1064.
    50. Nisimoto Y, Diebold BA, Cosentino-Gomes D and Lambeth JD. Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry. 2014;53:5111-5120.
    51. Schröder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, Kosowski J, Kruse C, Luedike P, Michaelis UR, Weissmann N, Dimmeler S, Shah Ajay M and Brandes Ralf P. Nox4 Is a Protective Reactive Oxygen Species Generating Vascular NADPH Oxidase. Circul Res. 2012;110:1217-1225.
    52. Vendrov AE, Vendrov KC, Smith A, Yuan J, Sumida A, Robidoux J, Runge MS and Madamanchi NR. NOX4 NADPH Oxidase-Dependent Mitochondrial Oxidative Stress in Aging-Associated Cardiovascular Disease. Antioxid Redox Signal. 2015;23:1389-409.
    53. Grodstein F and Stampfer M. The epidemiology of coronary heart disease and estrogen replacement in postmenopausal women. Prog Cardiovasc Dis. 1995;38:199-210.
    54. Lund LH and Mancini D. Heart failure in women. Med Clin North Am. 2004;88:1321-45, xii.
    55. Narula J, Kolodgie FD and Virmani R. Apoptosis and cardiomyopathy. Curr Opin Cardiol. 2000;15:183-8.
    56. Buja LM and Vela D. Cardiomyocyte death and renewal in the normal and diseased heart. Cardiovasc Pathol. 2008;17:349-74.
    57. Strehlow K, Rotter S, Wassmann S, Adam O, Grohe C, Laufs K, Bohm M and Nickenig G. Modulation of antioxidant enzyme expression and function by estrogen. Circ Res. 2003;93:170-7.
    58. Malorni W, Straface E, Matarrese P, Ascione B, Coinu R, Canu S, Galluzzo P, Marino M and Franconi F. Redox state and gender differences in vascular smooth muscle cells. FEBS Lett. 2008;582:635-642.
    59. Celestino I, Checconi P, Amatore D, De Angelis M, Coluccio P, Dattilo R, Alunni Fegatelli D, Clemente AM, Matarrese P, Torcia MG, Mancinelli R, Mammola CL, Garaci E, Vestri AR, Malorni W, Palamara AT and Nencioni L. Differential Redox State Contributes to Sex Disparities in the Response to Influenza Virus Infection in Male and Female Mice. Front Immunol. 2018;9:1747-1747.
    60. Wilson Sayres MA. Genetic Diversity on the Sex Chromosomes. Genome Biol Evol. 2018;10:1064-1078.
    61. Snell DM and Turner JMA. Sex Chromosome Effects on Male-Female Differences in Mammals. Current biology : CB. 2018;28:R1313-R1324.
    62. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, Cordum HS, Hillier L, Brown LG, Repping S, Pyntikova T, Ali J, Bieri T, Chinwalla A, Delehaunty A, Delehaunty K, Du H, Fewell G, Fulton L, Fulton R, Graves T, Hou S-F, Latrielle P, Leonard S, Mardis E, Maupin R, McPherson J, Miner T, Nash W, Nguyen C, Ozersky P, Pepin K, Rock S, Rohlfing T, Scott K, Schultz B, Strong C, Tin-Wollam A, Yang S-P, Waterston RH, Wilson RK, Rozen S and Page DC. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825-837.
    63. Reijo R, Lee T-Y, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, de la Chapelle A, Silber S and Page DC. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA–binding protein gene. Nat Genet. 1995;10:383-393.
    64. Lahn BT and Page DC. Functional Coherence of the Human Y Chromosome. Science. 1997;278:675.
    65. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281:8-27.
    66. Arango Duque G and Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491-491.
    67. Dinarello CA. Anti-inflammatory Agents: Present and Future. Cell. 2010;140:935-50.
    68. Lopez-Castejon G and Brough D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 2011;22:189-195.
    69. Cassel SL and Sutterwala FS. Sterile inflammatory responses mediated by the NLRP3 inflammasome. Eur J Immunol. 2010;40:607-611.
    70. Vasilyev FF, Silkov AN and Sennikov SV. Relationship between interleukin-1 type 1 and 2 receptor gene polymorphisms and the expression level of membrane-bound receptors. Cell Mol Immunol. 2015;12:222-230.
    71. Peters VA, Joesting JJ and Freund GG. IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain, Behav, Immun. 2013;32:1-8.
    72. Arend WP, Malyak M, Guthridge CJ and Gabay C. Interleukin-1 receptor antagonist: role in biology. Annu Rev Immunol. 1998;16:27-55.
    73. Manduteanu I and Simionescu M. Inflammation in atherosclerosis: a cause or a result of vascular disorders? J Cell Mol Med. 2012;16:1978-1990.
    74. Galkina E and Ley K. Immune and inflammatory mechanisms of atherosclerosis (*). Annu Rev Immunol. 2009;27:165-197.
    75. Bevilacqua MP, Pober JS, Wheeler ME, Cotran RS and Gimbrone MA, Jr. Interleukin-1 activation of vascular endothelium. Effects on procoagulant activity and leukocyte adhesion. Am J Pathol. 1985;121:394-403.
    76. Pandolfi A and De Filippis EA. Chronic hyperglicemia and nitric oxide bioavailability play a pivotal role in pro-atherogenic vascular modifications. Genes Nutr. 2007;2:195-208.
    77. Galea J, Armstrong J, Gadsdon P, Holden H, Francis SE and Holt CM. Interleukin-1 beta in coronary arteries of patients with ischemic heart disease. Arterioscler Thromb Vasc Biol. 1996;16:1000-6.
    78. Isoda K, Shiigai M, Ishigami N, Matsuki T, Horai R, Nishikawa K, Kusuhara M, Nishida Y, Iwakura Y and Ohsuzu F. Deficiency of interleukin-1 receptor antagonist promotes neointimal formation after injury. Circulation. 2003;108:516-8.
    79. Porritt RA, Markman JL, Maruyama D, Kocaturk B, Chen S, Lehman TJA, Lee Y, Fishbein MC, Noval Rivas M and Arditi M. Interleukin-1 Beta-Mediated Sex Differences in Kawasaki Disease Vasculitis Development and Response to Treatment. Arterioscler Thromb Vasc Biol. 2020;40:802-818.
    80. Chi H, Messas E, Levine RA, Graves DT and Amar S. Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation. 2004;110:1678-85.
    81. Grebe A, Hoss F and Latz E. NLRP3 Inflammasome and the IL-1 Pathway in Atherosclerosis. Circ Res. 2018;122:1722-1740.
    82. Fatkhullina AR, Peshkova IO and Koltsova EK. The Role of Cytokines in the Development of Atherosclerosis. Biochemistry Mosc. 2016;81:1358-1370.
    83. Libby P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Am Coll Cardiol. 2017;70:2278-2289.
    84. Stojanović SD, Fiedler J, Bauersachs J, Thum T and Sedding DG. Senescence-induced inflammation: an important player and key therapeutic target in atherosclerosis. Eur Heart J. 2020.
    85. 葉訓豪. 介白素-1β所誘發的腹主動脈血管平滑肌細胞的老化. 細胞生物與解剖學研究所. 2019:1-52.
    86. Porritt Rebecca A, Markman Janet L, Maruyama D, Kocaturk B, Chen S, Lehman Thomas JA, Lee Y, Fishbein Michael C, Noval Rivas M and Arditi M. Interleukin-1 Beta–Mediated Sex Differences in Kawasaki Disease Vasculitis Development and Response to Treatment. Atertio Thromb Vasc Biol. 2020;40:802-818.
    87. Bierman EL, Eisenberg S, Stein O and Stein Y. Very low density lipoprotein “remnant” particles: uptake by aortic smooth muscle cells in culture. Biochim Biophys Acta Bioenerg. 1973;329:163-169.
    88. Song P, Zhao Q and Zou M-H. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Research Reviews. 2020;60:101072.
    89. Katsuumi G, Shimizu I, Yoshida Y and Minamino T. Vascular Senescence in Cardiovascular and Metabolic Diseases. Front Cardiovasc Med. 2018;5:18-18.
    90. Childs BG, Li H and van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest. 2018;128:1217-1228.
    91. Brozovich FV, Nicholson CJ, Degen CV, Gao YZ, Aggarwal M and Morgan KG. Mechanisms of Vascular Smooth Muscle Contraction and the Basis for Pharmacologic Treatment of Smooth Muscle Disorders. Pharmacol Rev. 2016;68:476-532.
    92. Touyz RM, Alves-Lopes R, Rios FJ, Camargo LL, Anagnostopoulou A, Arner A and Montezano AC. Vascular smooth muscle contraction in hypertension. Cardiovasc Res. 2018;114:529-539.
    93. Bennett MR, Sinha S and Owens GK. Vascular Smooth Muscle Cells in Atherosclerosis. Circul Res. 2016;118:692-702.
    94. Dinh QN, Drummond GR, Sobey CG and Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. Biomed Res Int. 2014;2014:406960-406960.
    95. Durham AL, Speer MY, Scatena M, Giachelli CM and Shanahan CM. Role of smooth muscle cells in vascular calcification: implications in atherosclerosis and arterial stiffness. Cardiovasc Res. 2018;114:590-600.
    96. Mosca L, Barrett-Connor E and Wenger NK. Sex/gender differences in cardiovascular disease prevention: what a difference a decade makes. Circulation. 2011;124:2145-2154.
    97. Iorga A, Cunningham CM, Moazeni S, Ruffenach G, Umar S and Eghbali M. The protective role of estrogen and estrogen receptors in cardiovascular disease and the controversial use of estrogen therapy. Biol Sex Differ. 2017;8:33-33.
    98. Yang X, Yin Y and Wang H. Vascular inflammation and atherogenesis are activated via receptors for PAMPs and suppressed by regulatory T cells. Drug Discov Today Ther Strateg. 2008;5:125-142.
    99. Villar IC, Hobbs AJ and Ahluwalia A. Sex differences in vascular function: implication of endothelium-derived hyperpolarizing factor. J Endocrinol. 2008;197:447-62.
    100. Bacáková L and Kunes J. Gender differences in growth of vascular smooth muscle cells isolated from hypertensive and normotensive rats. Clin Exp Hypertens. 2000;22:33-44.
    101. Fischer KE and Riddle NC. Sex Differences in Aging: Genomic Instability. J Gerontol A Biol Sci Med Sci. 2017;73:166-174.
    102. McDonald ME, Li C, Bian H, Smith BD, Layne MD and Farmer SR. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell. 2015;160:105-18.
    103. Li J, Zhu X, Chen M, Cheng L, Zhou D, Lu MM, Du K, Epstein JA and Parmacek MS. Myocardin-related transcription factor B is required in cardiac neural crest for smooth muscle differentiation and cardiovascular development. Proc Natl Acad Sci U S A. 2005;102:8916-8921.
    104. Topouzis S and Majesky MW. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol. 1996;178:430-45.
    105. Trigueros-Motos L, González-Granado JM, Cheung C, Fernández P, Sánchez-Cabo F, Dopazo A, Sinha S and Andrés V. Embryological-origin-dependent differences in homeobox expression in adult aorta: role in regional phenotypic variability and regulation of NF-κB activity. Arterioscler Thromb Vasc Biol. 2013;33:1248-56.
    106. Qian N, Chen X, Han S, Qiang F, Jin G, Zhou X, Dong J, Wang X, Shen H and Hu Z. Circulating IL-1β levels, polymorphisms of IL-1B, and risk of cervical cancer in Chinese women. J Cancer Res Clin Oncol. 2010;136:709-716.
    107. Iglesias Molli AE, Bergonzi MF, Spalvieri MP, Linari MA, Frechtel GD and Cerrone GE. Relationship between the IL-1β serum concentration, mRNA levels and rs16944 genotype in the hyperglycemic normalization of T2D patients. Sci Rep. 2020;10:9985.
    108. Maury CP, Salo E and Pelkonen P. Circulating interleukin-1 beta in patients with Kawasaki disease. N Engl J Med. 1988;319:1670-1.
    109. Jaiswal M, LaRusso NF, Burgart LJ and Gores GJ. Inflammatory Cytokines Induce DNA damage and Inhibit DNA repair in Cholangiocarcinoma Cells by a Nitric Oxide-dependent Mechanism. Cancer Res. 2000;60:184.
    110. Ginnan R, Jourd’heuil FL, Guikema B, Simons M, Singer HA and Jourd’heuil D. NADPH oxidase 4 is required for interleukin-1β-mediated activation of protein kinase Cδ and downstream activation of c-jun N-terminal kinase signaling in smooth muscle. Free Radical Biol Med. 2013;54:125-134.

    下載圖示 校內:2025-07-31公開
    校外:2025-08-01公開
    QR CODE