簡易檢索 / 詳目顯示

研究生: 陳昶憲
Chen, Chang-Hsien
論文名稱: 奈米銅銀漿料的製備及性質之研究
Preparation and Properties of Copper-Silver Nanopaste
指導教授: 許聯崇
Hsu, Lien-Chung
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 79
中文關鍵詞: 奈米銅銀漿料低溫燒結銅前驅物
外文關鍵詞: copper-silver nanopaste, low-temperature, copper precursor
相關次數: 點閱:45下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究延續本實驗室銀奈米粒子合成之技術,成功製備出在200℃的低溫燒結溫度下即可將保護劑脫附完全、粒徑大小為20.3±4.1 nm的丙酸保護之銀奈米顆粒。同時也製備出以3-diethylamino-1,2-propanediol (DEAPD) 作為錯合劑與甲酸銅產生錯合物之銅前驅物,升溫至160℃後即可將有機物完全燒除且還原成銅。將奈米銀粉、銅前驅物以及溶劑於三滾筒式混料機內進行混合得到一種三元奈米銅銀漿料---Paste PM11。透過調整奈米銀粒與銅前驅物之含量進行電性與剪切強度測試取得一較佳的比例:當銀奈米粒子與銅前驅物比例為68:22時,在200℃的低溫燒結及接合溫度下電阻率為(1.53±0.35) x 10-6 (Ω*m),剪切強度即可達到26.83 MPa。以此漿料進行接合溫度參數之改變測試,結果顯示隨著溫度的提升,電阻率會逐漸下降、剪切強度也會提升,與微結構、孔隙率所觀察到的結果得以呼應。

    According to a previous work, we synthesized silver nanoparticles with an average diameter of approximately 20.3 nm, and the protecting agent could be removed at 210℃. With the addition of silver nanoparticles and a copper precursor, we successfully synthesized a low-temperature sintering copper-silver paste, which could be sintered at 200℃. We optimized the proportion of the silver nanoparticles and copper precursor to obtain the best performance. The PM11-6822 paste was mixed with a ratio of silver nanoparticles and copper precursor of 68 : 22, and after heat treatment at 200℃ for 30 mins under nitrogen, the electrical resistivity was 1.53 ± 0.35 x10-6 (Ω*m). Otherwise, the shear strength could reach 26.83 MPa after thermal compression at 200℃ for 30 mins under nitrogen. Furthermore, after heating or hot-pressing under different temperatures, there were obvious differences in the micro structure images of the PM11-6822 paste, where the porosity was reduced with increases in the temperature. In addition, the electrical resistivity decreased, and the shear strength increased with increases in temperature.

    摘要 I Extended Abstract………………………………………………………………………………….…II 致謝……………………………………………………………………………………………….……..…XI 目錄………………………………………………………………………………………….…………….XII 圖目錄 XXV 表目錄 XIX 第一章 緒論 1 1.1 前言 1 1.2 奈米粒子之性質 2 1-2-1. 表面效應 2 1-2-2. 尺寸效應 3 1-2-3. 穿隧效應 4 1.3 銅銀材料簡介 5 1.4 研究動機 8 第二章 文獻回顧與原理 10 2-1 奈米粒子的製備方法回顧 10 2-1-1. 物理製備方法 12 2-1-2. 化學製備方法 13 2-2 奈米銀燒結原理 24 2-3 奈米銀粒子合成 29 2-4 銅前驅物 30 第三章 實驗方法與步驟 33 3-1 實驗藥品與儀器 33 3-1-1. 實驗藥品 33 3-1-2. 實驗儀器 34 3-2 實驗步驟 35 3-2-1. 奈米銀粒子合成 35 3-2-2. 銅前驅物製備 37 3-2-3. 銅銀奈米漿料製備 38 3-3 燒結金屬薄膜電阻率檢測 38 3-4 剪切強度之測試 39 3-5 儀器分析原理與方法 42 3-5-1 高解析場發射掃描式電子顯微鏡 (High Resolution Field Emission Scanning Electron Microscope, HR FE-SEM) 42 3-5-2 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 42 3-5-3 X光繞射分析儀 (X-ray diffractometer, XRD) 43 3-5-4 熱重損失分析儀(Thermogravimetric analyzer, TGA) 43 3-5-5 四點探針 (Four point probe) 44 第四章 結果與討論 45 4-1 奈米銀粒子之製備及其性質研究 45 4-1-1 奈米銀粒子合成 45 4-1-2 奈米銀粒性質之鑑定 46 4-2 銅前驅物製備及性質檢測 50 4-2-1 銅前驅物熱分析 50 4-2-2 銅前驅物成分檢測 51 4-3 低溫燒結銅銀漿料檢測 53 4-3-1 銅銀漿料成分比例之研究 53 I. 銅銀漿料之熱性質研究 54 II. 銅銀漿料電性之研究 55 III. 銅銀漿料於銅-銅接合強度之研究 57 IV. 銅-銅低溫接合之銅銀漿料剪切破斷面微結構分析 59 V. 銅-銅低溫接合之銅銀漿料剖面微結構分析 62 VI. 銅-銅低溫接合之銅銀漿料的黏度測試 64 4-3-2 銅銀漿料於不同溫度下之性質檢測 65 I. 銅銀漿料的溫度與電性關係之研究 65 II. 銅銀漿料的溫度與剪切強度關係之研究 68 III. 銅銀漿料的溫度與微結構之分析 69 第五章 結論 74 第六章 參考文獻 76

    [1] 黃德歡, 改變世界的納米技術. 美國瀛舟出版社, 2002.
    [2] Q. Jiang, S. Zhang, and M. Zhao, "Size-dependent melting point of noble metals," Materials Chemistry and Physics, vol. 82, no. 1, pp. 225-227, 2003.
    [3] J. H. Fendler, "Atomic and molecular clusters in membrane mimetic chemistry," Chemical Reviews, vol. 87, no. 5, pp. 877-899, 1987.
    [4] W. F. Smith and J. Hashemi, Foundations of materials science and engineering. McGraw-Hill, 2011.
    [5] A. Handbook, "Alloy Phase Diagrams, vol. 3 (ASM International, Materials Park, OH, 1992)," Google Scholar.
    [6] C. Lam, Y. Zhang, Y. Tang, C. Lee, I. Bello, and S. Lee, "Large-scale synthesis of ultrafine Si nanoparticles by ball milling," Journal of Crystal Growth, vol. 220, no. 4, pp. 466-470, 2000.
    [7] F. Mafuné, J.-y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, "Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation," The Journal of Physical Chemistry B, vol. 104, no. 35, pp. 8333-8337, 2000.
    [8] D.-H. Chen and X.-R. He, "Synthesis of nickel ferrite nanoparticles by sol-gel method," Materials Research Bulletin, vol. 36, no. 7-8, pp. 1369-1377, 2001.
    [9] Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, and S.-K. Fu, "Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 262, no. 1-3, pp. 87-93, 2005.
    [10] W. Jiang, X. Hua, Q. Han, X. Yang, L. Lu, and X. Wang, "Preparation of lamellar magnesium hydroxide nanoparticles via precipitation method," Powder Technology, vol. 191, no. 3, pp. 227-230, 2009.
    [11] K. Petcharoen and A. Sirivat, "Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method," Materials Science and Engineering: B, vol. 177, no. 5, pp. 421-427, 2012.
    [12] K. Kimura, "The Study of Metal Colloids Produced by Means of Gas Evaporation Technique. II. Reaction of Metal Sols in Organic Solvents," Bulletin of the Chemical Society of Japan, vol. 57, no. 6, pp. 1683-1684, 1984.
    [13] Y. Takeuchi, T. Ida, and K. Kimura, "Colloidal stability of gold nanoparticles in 2-propanol under laser irradiation," The Journal of Physical Chemistry B, vol. 101, no. 8, pp. 1322-1327, 1997.
    [14] S. Yatsuya, S. Kasukabe, and R. Uyeda, "Formation of ultrafine metal particles by gas-evaporation technique—Aluminum in helium," Journal of Crystal Growth, vol. 24, pp. 319-322, 1974.
    [15] T. Sugimoto, K. Okada, and H. Itoh, "Synthetic of uniform spindle-type titania particles by the gel–sol method," ed: Elsevier, 1997.
    [16] K. Esumi, K. Matsuhisa, and K. Torigoe, "Preparation of rodlike gold particles by UV irradiation using cationic micelles as a template," Langmuir, vol. 11, no. 9, pp. 3285-3287, 1995.
    [17] A. Henglein and M. Giersig, "Formation of colloidal silver nanoparticles: capping action of citrate," The Journal of Physical Chemistry B, vol. 103, no. 44, pp. 9533-9539, 1999.
    [18] M. T. Reetz and W. Helbig, "Size-selective synthesis of nanostructured transition metal clusters," Journal of the American Chemical Society, vol. 116, no. 16, pp. 7401-7402, 1994.
    [19] D. V. Goia and E. Matijević, "Preparation of monodispersed metal particles," New Journal of Chemistry, vol. 22, no. 11, pp. 1203-1215, 1998.
    [20] A. C. Curtis et al., "Preparation and structural characterization of an unprotected copper sol," The Journal of Physical Chemistry, vol. 92, no. 8, pp. 2270-2275, 1988.
    [21] M. Antelman, The encyclopedia of chemical electrode potentials. Springer Science & Business Media, 2012.
    [22] S. L.-C. Hsu and R.-T. Wu, "Synthesis of contamination-free silver nanoparticle suspensions for micro-interconnects," Materials Letters, vol. 61, no. 17, pp. 3719-3722, 2007.
    [23] A. Slistan-Grijalva, R. Herrera-Urbina, J. Rivas-Silva, M. Avalos-Borja, F. Castillón-Barraza, and A. Posada-Amarillas, "Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol," Materials Research Bulletin, vol. 43, no. 1, pp. 90-96, 2008.
    [24] H. Wang, X. Qiao, J. Chen, and S. Ding, "Preparation of silver nanoparticles by chemical reduction method," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 256, no. 2-3, pp. 111-115, 2005.
    [25] 王鉦源, "以化學還原法製備奈米級銀鈀微粉," 成功大學化學工程學系學位論文, pp. 1-100, 2002.
    [26] S. He et al., "Formation of silver nanoparticles and self-assembled two-dimensional ordered superlattice," Langmuir, vol. 17, no. 5, pp. 1571-1575, 2001.
    [27] C. Jiang, D. J. Cardin, and S. C. Tsang, "Conductive three-dimensional material assembled from silver nanoparticles using a conjugated dithiol linker," Chemistry of Materials, vol. 20, no. 1, pp. 14-16, 2007.
    [28] Y. Tan, Y. Wang, L. Jiang, and D. Zhu, "Thiosalicylic acid-functionalized silver nanoparticles synthesized in one-phase system," Journal of colloid and interface science, vol. 249, no. 2, pp. 336-345, 2002.
    [29] R.-T. Wu and S. L.-C. Hsu, "Preparation of highly concentrated and stable suspensions of silver nanoparticles by an organic base catalyzed reduction reaction," Materials Research Bulletin, vol. 43, no. 5, pp. 1276-1281, 2008.
    [30] N. Wu, L. Fu, M. Su, M. Aslam, K. C. Wong, and V. P. Dravid, "Interaction of fatty acid monolayers with cobalt nanoparticles," Nano letters, vol. 4, no. 2, pp. 383-386, 2004.
    [31] K. J. Lee, Y.-I. Lee, I.-K. Shim, J. Joung, and Y. S. Oh, "Direct synthesis and bonding origins of monolayer-protected silver nanocrystals from silver nitrate through in situ ligand exchange," Journal of colloid and interface science, vol. 304, no. 1, pp. 92-97, 2006.
    [32] F. Bonet, V. Delmas, S. Grugeon, R. H. Urbina, P. Silvert, and K. Tekaia-Elhsissen, "Synthesis of monodisperse Au, Pt, Pd, Ru and Ir nanoparticles in ethylene glycol," Nanostructured Materials, vol. 11, no. 8, pp. 1277-1284, 1999.
    [33] S.-H. Wu and D.-H. Chen, "Synthesis of high-concentration Cu nanoparticles in aqueous CTAB solutions," Journal of colloid and interface science, vol. 273, no. 1, pp. 165-169, 2004.
    [34] G. C. Kuczynski, "Self-diffusion in sintering of metallic particles," JOM, vol. 1, no. 2, pp. 169-178, 1949.
    [35] K. Esumi, N. Ishizuki, K. Torigoe, H. Nakamura, and K. Meguro, "Preparation of colloidal silver using various reductants in the presence of copolymers of vinyl alcohol‐N‐vinyl pyrrolidone," Journal of applied polymer science, vol. 44, no. 6, pp. 1003-1007, 1992.
    [36] H. Huang et al., "Photochemical formation of silver nanoparticles in poly (N-vinylpyrrolidone)," Langmuir, vol. 12, no. 4, pp. 909-912, 1996.
    [37] Y. Sun and Y. Xia, "Shape-controlled synthesis of gold and silver nanoparticles," Science, vol. 298, no. 5601, pp. 2176-2179, 2002.
    [38] M. Zheng, Z.-S. Wang, and Y.-W. Zhu, "Preparation of silver nanoparticle via active template under ultrasonic," Transactions of Nonferrous Metals Society of China, vol. 16, no. 6, pp. 1348-1352, 2006.
    [39] J. J. Lee et al., "Silver complex inks for ink-jet printing: the synthesis and conversion to a metallic particulate ink," Journal of Ceramic Processing Research, vol. 8, no. 3, p. 219, 2007.
    [40] W.-d. Yang, C.-y. Liu, Z.-y. Zhang, Y. Liu, and S.-d. Nie, "One step synthesis of uniform organic silver ink drawing directly on paper substrates," Journal of Materials Chemistry, vol. 22, no. 43, pp. 23012-23016, 2012.
    [41] S. Jeong et al., "Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink‐jet printing," Advanced Functional Materials, vol. 18, no. 5, pp. 679-686, 2008.
    [42] Y. Jianfeng, Z. Guisheng, H. Anming, and Y. N. Zhou, "Preparation of PVP coated Cu NPs and the application for low-temperature bonding," Journal of Materials Chemistry, vol. 21, no. 40, pp. 15981-15986, 2011.
    [43] C. W. Kim, H. Jeong, Y. Noh, D. Lee, C. Lee, and C. Jin, "Influence of the Chemical Molar Ratio on the Copper Nanoparticles: Controlled‐Surfactants,‐Reducing Agents, and‐Precursors," Bulletin of the Korean Chemical Society, vol. 37, no. 5, pp. 700-704, 2016.
    [44] Y. Li, Y. Huo, C. Li, S. Xing, L. Liu, and G. Zou, "Thermal analysis of Cu-organic composite nanoparticles and fabrication of highly conductive copper films," Journal of Alloys and Compounds, vol. 649, pp. 1156-1163, 2015.
    [45] Y.-S. Li, Y.-C. Lu, K.-S. Chou, and F.-J. Liu, "Synthesis and characterization of silver–copper colloidal ink and its performance against electrical migration," Materials Research Bulletin, vol. 45, no. 12, pp. 1837-1843, 2010.
    [46] B. K. Park, D. Kim, S. Jeong, J. Moon, and J. S. Kim, "Direct writing of copper conductive patterns by ink-jet printing," Thin Solid Films, vol. 515, no. 19, pp. 7706-7711, 2007.
    [47] J. Li et al., "Depressing of CuCu bonding temperature by composting Cu nanoparticle paste with Ag nanoparticles," Journal of Alloys and Compounds, vol. 709, pp. 700-707, 2017.
    [48] A. Yabuki, N. Arriffin, and M. Yanase, "Low-temperature synthesis of copper conductive film by thermal decomposition of copper–amine complexes," Thin Solid Films, vol. 519, no. 19, pp. 6530-6533, 2011.
    [49] A. Yabuki and S. Tanaka, "Electrically conductive copper film prepared at low temperature by thermal decomposition of copper amine complexes with various amines," Materials Research Bulletin, vol. 47, no. 12, pp. 4107-4111, 2012.
    [50] A. Yabuki, Y. Tachibana, and I. W. Fathona, "Synthesis of copper conductive film by low-temperature thermal decomposition of copper–aminediol complexes under an air atmosphere," Materials Chemistry and Physics, vol. 148, no. 1-2, pp. 299-304, 2014.

    下載圖示 校內:2023-08-17公開
    校外:2023-08-17公開
    QR CODE