簡易檢索 / 詳目顯示

研究生: 何佳祐
Ho, Chia-Yu
論文名稱: 實尺寸太陽能光電板支架系統風機實驗與參數識別
Parameter Identification of Full-Scale Photovoltaic Panel Supporting Frame System through Fan Tests
指導教授: 朱世禹
Chu, Shih-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 108
中文關鍵詞: 風機試驗太陽能光電板支架系統傾斜角迎風角相似形系統識別
外文關鍵詞: Fan Test, Full-Scale Photovoltaic Panel, Supporting Frame System, Tilt Angle, Windward Angle, Similarity, System Identification
相關次數: 點閱:82下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 國內外已經有許多研究探討太陽能板受風後在板上的風壓分布影響,但多數是以縮尺模型進行風洞試驗。對於縮尺模型的試驗結果與實尺寸試體受風後之振動行為的比對,尚需要有更多研究來探討驗證。本研究針對健康狀態的實尺寸太陽能板及支架進行受風測試,並建立一套完整的試驗及分析流程。實驗規劃以內政部建築研究所風雨實驗場的大型風機作為造風設備,量測四米及六米跨度的支架及太陽能板,於不同迎風角受風時的加速度及特定點位的風速。並在時間域探討了風場的風速情況,及試體系統的振動情形;在頻率域探討風場的頻率含量及系統構件的主要頻率。分析結果顯示在兩種跨度下,風機轉速對應的風場風速及頻率含量均相當穩定。而系統構件主頻則顯示:四米及六米跨度的水平樑主頻分別為8.09及5 Hz,單片太陽能板為16.03 Hz,側邊斜樑為11.18 Hz。未來將可依本研究之系統各構件主頻,製作縮尺模型,探討縮尺與實尺寸的相似性參數的選定,並進一步與扣件鬆脫的實尺寸風機試驗比較,亦可建立完善的太陽能板支架系統測試流程。

    There have been many studies discuss the influence of wind pressure distribution on solar panels after wind, but most of them are wind tunnel tests based on scale-down models. For the consistency between the test results of the scale-down model and the vibration behavior of the full-scale specimen after being exposed to wind, more research is needed to verify the assumptions while performing wind-tunnel tests. This thesis conducts a wind test on a full-scale solar panel in its healthy state, and establishes a complete test and analysis process. In the experiment, the large outdoor fan of the Wind and Rain Experimental Field of the Architecture and Building Research Institute, Taiwan is used as the wind-generating equipment, and the accelerations and wind speeds of four-meter span and six-meter span PV supporting frame are measured at different windward angles when subjected to different wind speeds. In the time domain, the wind speed of the wind field and the vibration behavior of the specimen system are discussed; in the frequency domain, the frequency contents of the wind field and the fundamental frequencies of the supporting components are identified. The analysis results show that the frequency contents are stable at any wind speed arrangement. The fundamental frequencies of the main horizontal supporting beams with four-meter and six-meter spans are 8.09 and 5 Hz respectively, the single solar panel is 16.03 Hz, and the side truss beam is 11.18 Hz.

    摘要 I Extend Abstract II 誌謝 XII 目錄 XIII 表目錄 XVI 圖目錄 XIX 第1章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 縮尺太陽能板相關研究 2 1.2.2 實尺寸太陽能板相關研究 3 1.3 本文內文 3 第2章 理論介紹 5 2.1 結構動力理論 5 2.1.1 暫態解與穩態解 5 2.1.2 均布質量的簡單體系 5 2.2 連續時間狀態空間方程與s轉換 8 2.3 離散時間狀態空間方程與z轉換 9 2.4 頻率轉移函數 10 第3章 太陽能板之風機試驗 13 3.1 實驗架構 13 3.2 造風設備介紹 13 3.3 實驗試體介紹 13 3.3.1 太陽能光電板 13 3.3.2 地面型結構支架 14 3.4 感測器架設與矯正 14 3.4.1 高頻加速規 14 3.4.2 熱線流速儀 15 3.4.3 資料擷取系統 15 3.5 實驗流程 16 第4章 風機試驗結果分析方法與流程 39 4.1 風場分析流程 39 4.1.1 資料後處理 39 4.1.2 時間域分析 40 4.1.3 頻率域分析 42 4.2 加速度分析流程 42 4.2.1 時間域分析 42 4.2.2 頻率域 43 第5章 風機試驗分析結果與探討 72 5.1 加速度振幅分析結果 72 5.1.1 水平樑 72 5.1.2 太陽能板 73 5.2 頻率分析結果 73 5.2.1 風場 73 5.2.2 水平樑 74 5.2.3 太陽能板 75 第6章 結論與建議 105 6.1 結論 105 6.2 建議 106 參考文獻 107

    [1] Juang, J. N. (1994). Applied System Identification. Englewood Cliffs,New Jersey: Prentice Hall.
    [2] Chopra, A. K. (2001). Dynamics of Structures:Theory and Applications Earthguake Enginering (Vol. 2). Upper Saddle River, N.J.: Prentice-Hall.
    [3] Moravej, M., Chowdhury, A., Irwin, P., Zisis, I., & Bitsuamlak, G. (2015). Dynamic effects of wind loading on photovoltaic systems. Paper presented at the 14th. International Conference on Wind Engineering (ICWE14), Porto Alegre, Brazil.
    [4] Naeiji, A., Raji, F., & Zisis, I. (2015). Large-scale wind testing of photovoltaic panels mounted on residential roofs. Paper presented at the Structures Congress 2015.
    [5] Bienkiewicz, B., & Sun, Y., "Local wind loading on the roof of a low-rise building", Journal of wind engineering and industrial aerodynamics, Vol. 45, No., pp., (1992).
    [6] Shademan, M., & Hangan, H., "Wind Loading on Solar Panels at Different Inclination Angles", 11th Americas Conference on Wind Engineering, Vol. No., pp., (2009).
    [7] Kopp, G. A., Farquhar, S., & Morrison, M. J., "Aerodynamic mechanisms for wind loads on tilted, roof-mounted, solar arrays", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 111, No., pp. 40-52, (2012).
    [8] Erwin, J., Bitsuamlak, G., Chowdhury, A. G., Barkaszi, S., & Gamble, S., "Full Scale and Wind Tunnel Testing of a Photovoltaic Panel Mounted on Residential Roofs", Advances in Hurricane Engineering, Vol. No., pp., (2012).
    [9] Cao, J., Yoshida, A., Saha, P. K., & Tamura, Y., "Wind loading characteristics of solar arrays mounted on flat roofs", Journal of Wind Engineering and Industrial Aerodynamics, Vol. 123, No., pp. 214-225, (2013).
    [10] Chou, C.-C., Chung, K.-M., & Chang, K.-C., "Wind Loads of Solar Water Heaters: Wind Incidence Effect", Journal of Aerodynamics, Vol. 2014, No., pp. 1-10, (2014).
    [11] 鄭元良, & 陳若華, "陽光屋頂耐風評估與設計準則", 內政部建築研究所協同研究報告, Vol. No., pp., (2015).
    [12] Chung, P.-H., Chou, C.-C., Yang, R.-Y., & Chung, C.-Y., "Wind Loads on a PV Array", Applied Sciences, Vol. 9, No. 12, pp., (2019).
    [13] 李鎮宏, "太陽光電板支撐結構系統耐風性能研究成果報告", 內政部建築研究所自行研究報告, Vol. No., pp., (2020).

    下載圖示 校內:2025-09-01公開
    校外:2025-09-01公開
    QR CODE