簡易檢索 / 詳目顯示

研究生: 馬奕葳
Ma, Yi-Wei
論文名稱: 高效率與高品質服務之智慧聯網研究
Study of High Efficiency and Quality Services for Future Internet of Things
指導教授: 黃悅民
Huang, Yueh-Min
學位類別: 博士
Doctor
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 72
中文關鍵詞: 負載平衡多點路由傳輸網路管理控制智慧聯網
外文關鍵詞: Load Balancing, Multi-hop Routing, Management Control, Internet of Things
相關次數: 點閱:125下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 智慧聯網的概念起源於1999年,其精神為透過運用無線射頻辨識技術、全球衛星定位系統、掃描儀、紅外線及各種訊息感測裝置進行資訊擷取與交換。在訊息的傳遞與通訊過程中,智慧聯網聚焦於辨識帶有智慧的訊息,並且依據訊息進行後續的服務監控與管理。在智慧聯網中亦涉及到實體的網際網路,這意味者智慧聯網不僅是延伸和拓展網際網路的範疇,並且智慧聯網可建構出現實生活中物件與網際網路通訊的橋梁。並且未來網際網路將匯集各種通訊網路技術,包含標準網路通訊協定,及IoT (Internet of Things)、IoM (Internet of Media)、IoS (Internet of Services)與IoE (Internet of Enterprises)等,使人們可在任何時間(Anytime)、任何地點(Anywhere)與任何裝置(Anything)、任何人(Anyone)進行溝通,並且透過網路(Any Path/Network)取得所需的服務(Any Service)。然而在IoT環境中,大量物件於傳遞訊息過程中,將可能引起影響整體效能的問題,例如無線網路之安全性、服務品質、資源管理、行動通訊電力耗損與高錯誤率等問題。如繼續維持原有運作架構,勢必會影響未來網際網路環境的整體執行效能。在本論文中,分別透過解決中介系統之負載平衡、多點路由傳輸網路與終端裝置之管理控制等議題以滿足未來之需求。

    The Internet of Things (IoT), first promulgated in 1999, involves Radio Frequency Identification (RFID), sensors, global positioning systems, scanners and other information sensing devices. IoT depend on identifying intelligent information for Internet-related information exchange and communication, as well as monitoring and managing a network. IoT also involves connecting material objects to the Internet. IoT not only is an extension and expansion of the Internet but also provides clients with goods in response the exchange and communication of information. The next generation of networks will have to support various communication technologies and integrate various authentication methods. Besides the standard internet protocols, such new protocols as IoT, Internet of Media (IoM), Internet of Services (IoS) and Internet of Enterprises (IoE) will be included to enable communication with anyone at anytime anywhere, and for anything. In other words, the IoT approaches offered to the users could receive the required services from various networks. However, in the IoT communication system, the message delivery process with several objects raises problems that affect overall performance, involving for example wireless networking security, service quality, resource management, power loss, high error rates, and other issues. Some novel systems provide smart and convenient services to users with less detrimental effect. Therefore, this study aims to address numerous advanced solutions for balancing loads in middleware, the multi-hop routing of a transmission network, and management control of IoT devices.

    摘要 III Abstract IV List of Figures VIII List of Tables X Chapter 1 Introduction 1 1.1 Research Objectives 3 1.2 Organization of the Dissertation 4 Chapter 2 Background and Related Work 6 2.1 RFID 6 2.2 EPC Network 6 2.3 Wireless Sensor Network (WSN) 9 2.4 WSN Routing Mechanism 10 2.5 Network Reliability 13 2.6 Sensor Network Management Functions 15 Chapter 3 Load-balancing Mechanism for RFID Middleware System 17 3.1 Introduction 17 3.2 Load Balancing Mechanism 18 3.3 Performance Analysis 28 3.4 Summary 35 Chapter 4 Multi-Hop Routing Mechanism for Sensor Computing 36 4.1 Introduction 36 4.2 Proposed Reliable Routing Mechanism 38 4.3 Performance Analysis and Discussion 48 4.4 Summary 56 Chapter 5 An Efficient Management System for Wireless Sensor Networks 57 5.1 Introduction 57 5.2 WSNManagement Architecture 58 5.3 WSNManagement System Implementation 60 5.4 Performance Analysis 63 5.5 Summary 65 Chapter 6 Conclusion and Future Works 67 6.1 Conclusion 67 6.2 Future Works 68 References 69

    [1] M. Kranz, P. Holleis and A. Schmidt, "Embedded Interaction: Interacting with the Internet of Things," IEEE Internet Computing, Vol.14, No.2, pp.46-53, 2010.
    [2] J. Landt, “The History of RFID,” IEEE Journal of Potentials, Vol.24, No.4, pp.8-11, 2005.
    [3] J.L. Chen, M.C. Chen, C.W. Chen and Y.C. Chang, “Architecture Design and Performance Evaluation of RFID Object Tracking Systems,” Computer Communications, Vol.30, No.9, pp.2070-2086, 2007.
    [4] R. Want, “An Introduction to RFID Technology,” Proceedings of the IEEE Conference on Pervasive Computing, pp.25-33, 2006.
    [5] C. Atlig, M. Donnelly, R.M. Droes, D. Finlay, J. Hou, Y. Kilicaslan, B. Krose, M.O. Migliori, M. Mikalsen, M. Mulvenna, C. Nugent, S. Puglia, F. Scanu, E. Ucar, O. Ucar, T.V. Kasteren and S. Walderhaug, “Healthcare Systems and Other Applications,” Proceedings of the IEEE Conference on Pervasive Computing, pp.59-63, 2007.
    [6] EPCglobal Inc., “EPC Network Architecture,” EPCglobal Standards, 2004.
    [7] A. Petra and T. Zdenek, “UHF RFID Technology and its Applications,” Proceedings of the 17th International Conference on Radioelektronika, pp.1-5, 2007.
    [8] EPCglobal Inc., “Object Naming Service Version 1.0,” EPCglobal Ratified Specification, 2005.
    [9] P. Kourouthanassis and G. Roussos, “Developing Consumer-Friendly Pervasive Retail Systems,” IEEE Pervasive Computing, Vol.2, No.2, pp.32-39, 2003.
    [10] R. Want, “The Magic of RFID,” ACM Queue, Vol.2, No.7, pp.40-48, 2004.
    [11] G. Sharma and R.R. Mazumdar, “A Case for Hybrid Sensor Networks,” IEEE/ACM Transactions on Networking, Vol.16, No.5, pp.1121-1132, 2006.
    [12] Z.H. Zhang, M. Ma and Y.Y. Yang, “Energy-Efficient Multihop Polling in Clusters of Two-Layered Heterogeneous Sensor Networks,” IEEE Transactions on Computers, Vol.57, No.2, pp.231-245, 2008.
    [13] A. Bonivento, C. Fischione, L. Necchi, F. Pianegiani and A. Sangiovanni-Vincentelli, “System Level Design for Clustered Wireless Sensor Networks,” IEEE Transactions on Industrial Informatics, Vol.3, No.3, pp. 202-214, 2007.
    [14] M. Barachi, A. Kadiwal, R. Glitho, F. Khendek and R. Dssouli, “The Design and Implementation of Architectural Components for the Integration of the IP Multimedia Subsystem and Wireless Sensor Networks,” IEEE Communications Magazine, Vol.48, No.4, pp.42-50, 2010.
    [15] L. Ruiz and A. Loureiro, “MANNA: A Management Architecture for Wireless Sensor Works,” IEEE Communications Magazine, Vol.41, No.2, pp.116-125, 2003.
    [16] Y.M. Huang, M.Y. Hsieh, H.C. Chao, S.H. Hung and J.H. Park, “Pervasive, Secure Access to a Hierarchical-Based Healthcare Monitoring Architecture in Wireless Heterogeneous Sensor Networks,” IEEE Journal on Selected Areas in Communications, Vol.27, No.4 , pp.400-411, 2009.
    [17] L. Zhou, X. Wang, W. Tu, G.-M. Muntean and B. Geller, “Distributed Scheduling Scheme for Video Streaming Over Multi-Channel Multi-Radio Multi-Hop Wireless Networks,” IEEE Journal on Selected Areas in Communications, Vol.28, No.3, pp.409-419, 2010.
    [18] L. Zhou, B. Geller, B. Zheng, A. Wei and J. Cui, “System Scheduling for Multi-Description Video Streaming Over Wireless Multi-Hop Networks,” IEEE Transactions on Broadcasting Vol.55, No.4, pp.731-741, 2009.
    [19] Auto-ID Labs, http://www.autoidlabs.org/ (last visited October 15, 2010)
    [20] EPCglobal Inc., http://www.epcglobalinc.org (last visited October 15, 2010)
    [21] R. Weinstein, “RFID: A Technical Overview and Its Application to the Enterprise,” Proceedings of the IEEE IT, Vol.7, No.3, pp.27-33, 2005.
    [22] B. Nath, F. Reynolds and R. Want, “RFID Technology and Applications,” IEEE Pervasive Computing, Vol.5, No.1, pp.22-24, 2006.
    [23] R. Buyya and M. Murshed, “GridSim: A Toolkit for the Modeling and Simulation of Distributed Resource Management and Scheduling for Grid Computing,” Journal of Concurrency and Computation: Practice and Experience, Vol.14, pp.1175-1220, 2002.
    [24] M.Y. Hsieh, Y.M. Huang and H.C. Chao, “Adaptive Security Design with Malicious Node Detection in Cluster-Based Sensor Networks,” Computer Communications. Vol.30, pp.2385-24000, 2007.
    [25] H. AboElFotoh, S. Iyengar and K. Chakrabarty, “Computing Reliability and Message Delay for Cooperative Wireless Distributed Sensor Networks Subject to Random Failures,” IEEE Transactions on Reliability, Vol.54, No.1, pp.145-155, 2005.
    [26] Z. Jiang, J. Wu and D. Yang, “A New Fault Information Model for Fault-Tolerant Adaptive and Minimal Routing in 3-D Meshes,” IEEE Transactions on Reliability, Vol.57, No.1, pp.149-162, 2008.
    [27] B.L. Su, M.S. Wang and Y.M. Huang, “Localized and Load-Balanced Clustering for Energy Saving in Wireless Sensor Networks,” International Journal of Communication Systems, Vol.21, No.8, pp.799-814, 2008.
    [28] M. Zarei, “Reverse AODV Routing Protocol Extension using Learning Automata in Ad hoc Networks,” Proceedings of the International Conference on Computer, Control and Communication, pp.1-5, 2009.
    [29] R. Bai and M.Singhai, “DOA: DSR over AODV Routing for Mobile Ad hoc Networks,” IEEE Transactions on Mobile Computing, Vol.5, No.10, pp.1403-1416, 2006.
    [30] J.L. Chen, H.F. Lu and C.A. Lee, “Autonomic Self-Organization Architecture for Wireless Sensor Communications,” International Journal of Network Management, Vol.17, No.3, pp.197-208, 2006.
    [31] G.A. Hoffmann, K.S. Trivedi and M. Malek, “A Best Practice Guide to Resource Forecasting for Computing Systems,” IEEE Transactions on Reliability, Vol.56, No.4, pp.615-628, 2007.
    [32] H. Jabbar, S. Lee, S. Choi, S. Baek, S. Yu and T. Jeong, “A Novel Sensing Method and Sensing Algorithm Development for a Ubiquitous Network,” Sensors, Vol.10, pp. 8129-8142, 2010.
    [33] J.C. Cuevas-Martinez, M.A. Gadeo-Martos, J.A. Fernandez-Prieto, J. Canada-Bago, and A.J. Yuste-Delgado, “Wireless Intelligent Sensors Management Application Protocol-WISMAP,” Sensors, Vol.10, pp.8827-8849, 2010.
    [34] S. Duan and X. Yuan, “Exploring Hierarchy Architecture for Wireless Sensor Networks Management,” Proceedings of the 2006 IFIP International Conference on Wireless and Optical Communications Networks, 2006.
    [35] TOSSIM, Available online: http://www.cs.berkeley.edu/~pal/research/tossim.html (accessed on 15 September 2010).
    [36] TinyOS, Available online: http://www.tinyos.net/ (accessed on 15 September 2010).

    無法下載圖示 校內:2016-09-02公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE