簡易檢索 / 詳目顯示

研究生: 王舜民
Wang, Shun-Ming
論文名稱: AISI 4140合金鋼在極高速剪切荷載下之絕熱剪切變形與破壞行為分析
Adiabatic Deformation and Fracture Behaviour of AISI 4140 Alloy Steel under Extreme High Shear Loading
指導教授: 李偉賢
Lee, Woei-Shyan
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 190
中文關鍵詞: 極高速剪切塑性變形AISI 4140
外文關鍵詞: adiabatic shear, Hat-Shaped, AISI 4140, High shear loading, Shear band
相關次數: 點閱:100下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要是利用霍普金森撞擊試驗機及帽型(Hat Shaped)試件來探討AISI 4140合金在三種不同溫度及極高速剪切荷載下之絕熱剪切變形行為。實驗於低溫-100℃、室溫25℃及高溫300℃,且分別在應變速率為4.1x105s-1、5.1x105s-1及6.5x105s-1下進行,藉由實驗所得之巨觀機械性質與和微觀破壞機制,來探討以瞭解AISI 4140合金件在極高應變速率下的動態剪切特性及剪切帶微觀組織之變化。
    實驗結果顯示,環境溫度、應變速率及應變量對AISI 4140合金的巨觀機械性質影響甚鉅,其塑流應力值隨著應變速率的增加及環境溫度的下降而上升;在達到最大值後,因為熱軟化之影響,塑流應力隨著應變量的增加而下降,且在環境溫度低的下降得更明顯。AISI 4140合金的應變速率敏感性係數隨應變速率上升及環境溫度的下降而增加;隨應變量增加而減少。熱活化體積則隨著應變速率之增加而下降,隨應變量增加而增加。隨著應變量的增加,加工硬化率及應變速率敏感性皆呈現下降的趨勢,而熱活化體積則會上升。
    微觀組織經由金相觀察後,發現三種不同溫度下之AISI 4140合金的絕熱剪切帶均為相變態剪切帶,且剪切帶寬度隨應變速率增加而減小;且會隨著環境溫度的下降而減小。剪切帶中心的局部應變量最大,隨著離開剪切帶的距離增加局部應變量迅速減小。SEM破斷面分析發現三種不同溫度下之AISI 4140合金破壞特徵分別為韌窩、劈裂及節瘤組織形貌,隨著應變速率增加及環境溫度的增加,韌窩深度及劈裂密度亦隨之增加。藉由TEM觀察,可以發現剪切帶附近的波來鐵組織非常的明顯,且有部分晶粒受到極高速的剪切而改變流動方向。另外在剪切帶上發現到麻田散鐵組織以及極微小單晶粒的產生。

    This study uses a compressive split-Hopkinson pressure bar with hat-shaped specimens to investigate adiabatic shear banding in AISI 4140 alloys tested at temperature of -100℃, 25℃ and 300℃ under extremely high strain rates ranging from 4.1×105s-1 to 6.5×105s-1. Optical microscopy (OM) and scanning electronic microscopy (SEM) techniques are used to analyze the shear band formation and the microstructural characteristics of the deformed specimens in order to establish the correlation between the adiabatic shear behaviour of the AISI 4140 alloys tested at temperature of -100℃, 25℃ and 300℃ and their respective mechanical properties.
    The experimental results indicate that the shear properties of the AISI 4140 alloys are significantly dependent upon the applied strain rate, strain and temperature. For a constant temperature, the shear flow stress, shear strain, strain rate sensitivity, temperature rise and micro-hardness are all found to increase with increasing strain rate, while the activation volume decreases. Thermal softening takes place during the current adiabatic shear processes and has a significant effect on the dynamic shear mechanical properties of the AISI 4140 alloys. Thermal softening results in strain instability and strain localization, and eventually leads to fracturing of the adiabatic shear band. The OM observations reveal that adiabatic shear bands are formed in all the impacted specimens. The local shear strain decreases with increasing distance from the center of the shear band, while the width of the shear band decreases with increasing strain rate. The SEM results reveal that the fracture surfaces of the AISI 4140 alloys at temperature of -100℃, 25℃ and 300℃ are characterized by a dimple-like, cleavage and knobble structure, which indicate that the specimens fail in a ductile and brittle manner. In all case, the area of the cleavage region increases with increasing strain rate and, while the size of the dimple area reduces.
    We could find that for the observation of TEM the structure of perlite around the shear band was very clear, and some of grains flowing direction were changed due to extrmely high shear force. And the growths of martinsite structure and ultra fine grain are found.

    總目錄 中文摘要 I ABSTRACT II 誌 謝 IV 總目錄 V 表目錄 IX 圖目錄 XI 符號說明 XXVII 第一章 前言 1 第二章 理論與文獻回顧 3 2-1碳鋼之介紹[11,12] 3 2-2合金鋼之介紹[12] 4 2-2-1合金鋼與碳鋼的成分差異[13] 4 2-2-2高強度低合金鋼的介紹與其強化機構 5 2-2-3 合金成份對合金鋼之影響[12] 7 2-2-4合金鋼之分類與用途[11,12] 8 2-3 AISI 4140合金鋼之介紹 9 2-3-1 AISI 4140合金鋼之性質 9 2-3-2 AISI 4140合金鋼之應用 10 2-4 一維波傳理論 10 2-5 霍普金森壓縮試驗機原理 13 2-5-1 基本原理 13 2-5-2 霍普金森壓縮試驗機上的絕熱剪切試驗 15 2-6 塑性變形行為之機械測試類別 16 2-7 材料塑性變形行為之特性 18 2-8 絕熱剪切 20 第三章 實驗方法與步驟 37 3-1試件製作 37 3-2 實驗儀器設備 38 3-2-1 霍普金森壓縮試驗機 38 3-2-2 訊號處理裝置 39 3-2-3 加熱裝置 39 3-2-4 雙噴式電解拋光機 40 3-2-5 低速切割機 40 3-2-6 光學顯微鏡 (OM) 40 3-2-7 掃描式電子顯微鏡 (SEM) 40 3-2-8 微小硬度試驗機 (Micro-Hardness Tester) 41 3-2-9穿透式電子顯微鏡(TEM) 41 3-3 實驗方法與步驟 42 3-3-1 動態剪切試驗 42 3-3-2試件金相之觀察 (OM) 43 3-3-3破斷面之觀察 (SEM) 43 3-3-4 試件之微硬度分析 44 3-3-5 TEM試片製備 44 第四章 實驗結果與討論 48 4-1絕熱剪切帶之寬度 48 4-1-1絕熱剪切帶之實際量測 48 4-1-2絕熱剪切帶之理論計算 49 4-2 剪應力-剪應變曲線之討論 50 4-3 應變速率效應 51 4-4 溫度效應 53 4-5 熱活化體積 54 4-6 絕熱剪切過程之平均溫升量 55 4-7 絕熱剪切帶附近之金相組織觀察(OM) 58 4-7-1 絕熱剪切區內局部剪應變之分佈 59 4-7-2 絕熱剪切區內微硬度之分析 60 4-8絕熱剪切之破壞形貌觀察 (SEM) 61 4-9絕熱剪切之顯微結構觀察與分析 (TEM) 64 第五章 結論 181 參考文獻 183

    1. J. Bauschinger, Mitteilungem, Munich Mechenish Technische Lab, 20, 1981.
    2. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading,” Proc. Phys. Soc., No. 62, pp. 676-700, 1949.
    3. B. M. Butcher and C. H. Karnes, “Strain Rate Ettects in Metals,” J. Appl. Phys., Vol. 37, pp. 402-411, 1964.
    4. F. E. Hauser, “Techniques for Measuring Stress-Strain Relations at High Strain Rates,” Exp. Mech., Vol. 6, pp. 395-402, 1966.
    5. Y. Leroy and M. Ortiz, “In Mechanical Properties of Materials at High Rates of Strain,” J. Harding, pp. 257-265, 1989.
    6. D. J. Steinberg, S. G. Cochran and N. W. Guinan, “A Constitutive Model for Materials Applicable at High Strain Rate,” J. Appl. Phys. Vol. 51, No. 3, pp. 1498-1504, 1980.
    7. C. Y. Chiem and J. Duffy, “Strain Rate Effects and Observations of Dislocation Substructure in Aluminum Single Crystals Following Dynamic Deformation,” Mater. Sci. and Eng., Vol. 57, pp. 233-247, 1983.
    8. J. R. Klepaczko, “Discussion of Microstructual Effects and Their Modelling at High Rates of Strain,” Inst. Phys. Conf. Ser., No. 102, Session 6B, paper presented at Int. Conf. Mech. Prop. Materials at High Rates of Strain, Oxford, pp. 283-298, 1989.
    9. G. E. Deiter, Mechanical Metallurgy, 3rd Edition, McGraw-Hill Co., New York. pp. 463-491, 1986.
    10. J. L. Chiddester and L. E. Malvern, “Compression Impact Testing of Aluminum at Elevated Temperature,” Exp. Mech. Vol. 3, pp. 81-88, 1963.
    11. 夢繼洛,機械材料,曉圓出版社,頁201-205,民國八十四年。
    12. 梁昌夫,機械材料,全華科技圖書公司印製,頁136-138,民國八十四年。
    13. 東和鋼鐵公司經理何長慶,鋼筋材料機理與CNS規範之要求。
    14. M. Militzer, E. B. Hawbolt, and T. R. Meadowcroft, “Microstructural Model for Hot Strip Rolling of High-Strength Low-Alloy Steels,” Metall. Mater. Trans. A, Vol. 31 A, pp. 1247-1259, 2000.
    15. J. M. Dowling, J. M. Corbett, and H. W. Kerr, “Inclusion Phases and the Nucleation of Acicular Ferrite in Submerged Arc Welds in High Strength Low Alloy Steels,” Metall. Trans. A, Vol. 17, pp. 1611-1623, 1986.
    16. R. E. Reed-Hill, R. Abbaschian, Phys. Metal. Pri. 3rd, International Thomson Publishing, pp. 18-19, 1992.
    17. H. Adrian, “Thermodynamic Model for Precipitation of Carbonitrides in High Strength Low Alloy Steels Containing up to Three Microalloying Elements with or Without Additions of Aluminium,” Mater. Sci. Tech. Vol. 8, pp. 406-420, 1992.
    18. ASM Handbook, Metals Handbook, Amer. Soc. Met., pp. 215-230, 1978.
    19. Y. C. Lin, M. S. Chen, J. Zhong, “Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel,” J. Mater. Tec. 205, pp. 308-315, 2008.
    20. Y. Tomita and K. Okabayashi, “Modified Heat Treatment for Lower Temperature Improvement of the Mechanical Properties of Two Ultrahigh Strength Low Alloy Steels,” Meta. Trans A, Vol. 16 A, pp. 83-90, 1985.
    21. S. R. Collins and G. Michal, “Effects of Processing on the Transverse Fatigue Properties of Low-Sulfur AISI 4140 Steel,” Meta. Trans. A, Vol. 24 A, pp. 2701-2708, 1993.
    22. R. S. Lakhkar, Y. C. Shin, M. J. M. Krane, “Predictive Modeling of Multi-Track Laser Hardening of AISI 4140 Steel,” Mater. Sci. Eng., Vol. 480, pp. 209–217, 2008.
    23. C. R Gonzalez, J. A. G. Gonzalez, G. Mesmacque, U. S. Santana, “Dynamic Fracture Toughness of Pre-Fatigued Materials,” Int. J. Fat., Vol. 30 , pp. 1056–1064, 2008.
    24. T. Miokovic, V. Schulze, O. Vohringer, D. Lohe, “Prediction of Phase Transformations during Laser Surface Hardening of AISI 4140 Including the Effects of Inhomogeneous Austenite Formation,” Mater. Sci. and Eng., Vol. 435, pp. 547–555, 2006.
    25. C. Hakan , B. O. Tuncerb, “Characterization of Microstructural Phases of Steels by Sound Velocity Measurement,” Mater. Char., Vol. 55, pp. 160– 166, 2005.
    26. P. P. Chamy, A. Joseph, T. Jayakumar and B. Raj, “Ultrasonic Velocity Measurements for Estimation of Grain Size in Austenitic Stainless Steel,” NDT&E Int., Vol. 28, No. 3, pp. 179-185, 1995.
    27. B. Podgornik, J. Vizintin , O. Wanstrand, M. Larsson , S. Hogmark, H. Ronkainen, K. Holmberg, “Tribological Properties of Plasma Nitrided and Hard Coated AISI 4140 Steel,” Wear 249, pp. 254–259, 2001.
    28. S. H. Choo, S. Lee, M. G. Golkovski, “Effects of Accelerated Electron Beam Irradiation on Surface Hardening and Fatigue Properties in AISI 4140 Steel Used for Automotive Crankshaft,” Mater. Sci. and Eng., Vol. 293, pp. 56–70, 2000.
    29. A. H. Meysami, R. Ghasemzadeh, S. H. Seyedein, M. R. Aboutalebi, “An Investigation on the Microstructure and Mechanical Properties of Direct-Quenched and Tempered AISI 4140 Steel,” Mater. Design, Vol. 31, pp. 1570–1575, 2010.
    30. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Exp. Mech., Vol. 3, pp. 81-88, 1983.
    31. M. A. Meyers, Elastic Waves in Dynamics Behavior of Materials, John Wiley & Sons, pp. 23-65, 1994.
    32. J. D. Campbell, “Dynamic Plasticity-Macrosopic and Microscopic Aspects,” Mater. Sci. and Eng., Vol. 12, pp. 3-21, 1973.
    33. Y. L. Bai and B. Dodd, “Adiabatic Shear Localization Occurrence,” Theo. Appl., Pergamon Press, N. Y., 1992.
    34. M. A. Meyers and L. E. Murr, Shock Waves and High-Strain-Rate Phenomena in Metals, Plenum Press, pp. 129-167, 1981.
    35. U. Andrade, M. A. Meyers, K. S. Vecchio and A. H. Chokshi, “Dynamic Recrystallization in High-Strain, High-Strain-Rate Plastic Deformation of Copper,” Acta Metall. Mater., Vol. 42, pp. 3183-3195, 1994.
    36. M. E. Backman, S. A. Finnegan, R. W. Rohde, B. M. Butcher, J. R. Holland, C. H. Karnes, Metallurgical Effects at High Strain Rates, Plenum Press, New York, 1973, pp. 531–543.
    37. S. N. Nasser, J. B. Isaacs and M. Liu, “Microstructure of High-Strain, High-Strain-Rate Deformed Tantalum,” Acta Mater., Vol. 46, pp. 1307-1325, 1998.
    38. K. Cho, S. Lee, S. R. Nutt, J. Duffy, Acta Metall. Mater., Vol. 41, pp. 923, 1993.
    39. M. A. Meyers, V. F. Nesterenko, J. C. LaSalvia and Q. Xue, “Shear Localization in Dynamic Deformation of Materials: Microstructural Evolution and Self-Organization,” Mater. Sci. Eng. A, Vol. 317, pp. 204-225, 2001.
    40. ASM Handbook Committee, Metals Handbook, American Society for Metals, pp. 215-230, 1978.
    41. J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Mater. Sci. and Eng., Vol. 12, pp. 3-21, 1973.
    42. D. Klahn, A. K. Mukherjee and J. E. Dorn, “Proceedings of the 2nd International Conference on the Strength of Metals and Alloys,” Vol. III, ASM, pp. 951, 1970.
    43. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Philosophical Magazine, Vol. 21, pp. 63-82, 1970.
    44. A. M. Eleiche and J. D. Campbell, “Strain-Rate Effects During Reverse Torsional Shear,” Exp. Mech., Vol. 16, pp. 281-290, 1976.
    45. A. Seeger, “The Generation of Lattice Defects by Moving Dislocations, and its Application to the Temperature Dependence of the Flow-Stress of FCC Crystals,” The Philosophical Magazine, Vol. 46, pp. 1194-1217, 1955.
    46. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” J. Mech. Phys., Vol. 13, pp. 41-49, 1965.
    47. H. Conrad, “Thermally Activated Deformation of Metals,” J. Met., pp. 582-588, 1964.
    48. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” J. Appl. Phys., Vol. 38, pp. 1863-1869, 1967.
    49. J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” J. Mech. Phys. Sol., Vol. 18, pp. 43-63, 1970.
    50. D. K. Kim, S. Lee, W. H. Baek, “Microstructure Study of Adiabatic Shear Bands Formed by High-Speed Impact in a Tungsten Heavy Alloy Penetrator,” Mater. Sci. and Eng. A, Vol. 249, pp. 197-205, 1998.
    51. D. S. Kim, S. N. Nasser, J. B. Isaacs, D. Lischer, “Adiabatic Shear Bands in WHA in High-Strain-Rate Compression,” Mech. Mater., Vol. 28, pp. 227-236, 1998.
    52. D. A. Shockey, “Materials Aspects of the Adiabatic Shear Phenomenon”, Metallurgical Applications of Shock-Wave and High-Strain-Rate Phenomena, pp. 633-656, 1986.
    53. R. E Recht, Catastrophic Thermoplastic Shear, J. Appl. Mech., Vol 18, pp. 189-193, 1964.
    54. C. Zener and J. H. Hollomon, “Effect of Strain Rate upon Plastic Flow of Steel,” J. Appl. Phys., 15, pp. 22-32, 1944.
    55. M. A. Meyers, U. R. Andrade, and A. H. Chokshi, “The Effect of Grain Size on the High-Strain, High Strain Rate Behavior of Copper,” Metall. Mater. Trans. A, Vol. 26 A, pp. 2881-2893, 1995
    56. Y. B. Xu, Y. L. Bai, Q. Xue and L. T. Shen, “Formation Microstructure and Development of the Localized Shear Deformation in Low Carbon Steels,” Acta Mater., Vol. 44, pp.1917-1926, 1996.
    57. B. Dodd and Y. Bai, “Width of Adiabatic Shear Bands,” Mater. Sci. Tech., Vol. 1, pp. 38-40, 1985.
    58. C. Mason, M. J. Worswick, “Adiabatic Shear in Annealed and Shock-Hardened Iron and in Quenched and Tempered 4340 Steel,” Inter. J. Frac., Vol. 111, pp. 29-51, 2001.
    59. R. D. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High Strain Rate Phenomena in Metal: Concepts and Applications,” pp. 22-26, 1980.
    60. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part 1, R. F. Bunshah, Wiley- Interscience, New York, pp. 199, 1971.
    61. Y. J. Chen, M. A. Meyers, V. F. Nesterenko, “Spontaneous and Forced Shear Localization in High-Strain-Rate Deformation of Tantalum,” Mater. Sci. Eng. A, Vol. 268, pp. 70–82, 1999.
    62. Y. Bai, B. Dodd, “Adiabatic Shear Localization: Occurrence, Theories and Applications,” Pergamon, Oxford, 1992.
    63. B. Dodd, Y. Bai, “Width of Adiabatic Shear Bands,” Mater. Sci. Tech. Vol. 1, No. 1, pp. 38-40, 1985.
    64. Y. Bai, C. Cheng, S. Yu, Acta Mech. Sinica 2, pp. 1–7, 1986.
    65. T. W. Wright, “Steady Shearing in a Viscoplastic Solid,” J. Mech. Phys. Solids 35, pp. 269–282, 1987.
    66. U. R. Andrade, M. A. Meyers, K. S. Vecchio, A. H. Chokshi, Acta Metall. Mater., Vol. 42, pp. 3183–3195, 1994
    67. W. S. Lee, C. Y. Liu. “Comparison of Dynamic Compressive Flow Behaviour of Mild and Medium Steels over Wide Temperature Range,” Metall. and Mater. Trans. Phys. Metall. and Mat. Sci., Vol. 36, pp.3175-3186, 2005.
    68. M. Hayakawa, S. Matsuoka, Y. Furuya, “Nanoscopic Measurement of Local Plastic Deformation for a Tempered Martensitic Steel by Atomic Force Microscopy,” Mater. Letters, Vol. 57, pp. 3037–3042, 2003.
    69. J. F. C. Lins, H. R. Z. Sandim , H. J. Kestenbach, D. Raabe , K. S. Vecchio, “A Microstructural Investigation of Adiabatic Shear Bands in an Interstitial Free Steel,” Mater. Sci. and Eng. A, Vol. 457, pp. 205–218, 2007.
    70. T. W. Wright, The Physics and Mathematics of The Adiabatic Shear Bands, Cambridge University Press, 2002.
    71. Y. B. Xu, W. L. Zhong, Y. J. Chen, L. T. Shen, Q. Liu, Y. L. Bai and M. A. Meyers, “Shear Localization Recrystallization in Dynamic Deformation of 8090Al-Li Alloy,” Mater. Sci. and Eng. A, Vol. 299, pp. 287-295, 2001.
    72. J. H. Giovanola, “Adiabatic Shear Banding under Pure Shear Loading Part II: Fractographic and Metallographic Observation,” Mech. Mater., Vol. 7, pp. 73-87, 1988.
    73. M. E. Backman, E. Marvin, Finnegan and A. Stephen, “Propagation of Adiabatic Shear,” Amer. Soc. and Mater., pp. 531-543, 1973.
    74. Y. H. Pao and A. Gilat, “High Strain Rate Deformation and Failure of A533B Steel at Various Temperatures,” Acta Metall. Mater., Vol. 40, pp. 1271-1280, 1992.
    75. A. J. Bedford, A. L. Wingrove and K. R. L. Thompson, “Phenomenon of Adiabatic Shear Deformation,” J. Aus. Inst. Met., Vol. 19, pp. 61-73, 1974.
    76. K. Cho, Y. C. Chi and J. Duffy, “Microscopic Observations of Adiabatic Shear Bands in Three Different Steels,” Met. Trans. A, Vol. 21, pp. 1161-1175, 1990.
    77. 楊孟杰,“ 預變形304L不銹鋼在高速高溫變形下之機械性質與微觀結構分析”國立成功大學機械工程學系碩士論文,2008。
    78. 羅文振,“ 316L不銹鋼在不同溫度下之動態撞及行為分析”國立成功大學機械工程系碩士論文,2010。

    下載圖示 校內:2012-07-25公開
    校外:2012-07-25公開
    QR CODE