簡易檢索 / 詳目顯示

研究生: 黃傑
Huang, Jei
論文名稱: 以電漿化學氣相沉積法製備功能性薄膜
Fabrication of Functional Thin Film by Plasma Chemical Vapor Deposition
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 功能性薄膜化學氣相沉積法
外文關鍵詞: Chemical Vapor Deposition, Functional Thin Film
相關次數: 點閱:97下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於電漿本身具有高位能和低動能,因此許多高溫下才能達到的反應皆可於常溫下藉由電漿完成。而常壓冷電漿不需昂貴的真空設備,具有處理量大、可連續式操作的優點,為一種極有潛力的製程技術。本研究主要的目的為建立一套常壓冷電漿鍍膜系統,期望利用常壓冷電漿的優勢快速地在低溫環境下製備高品質功能性薄膜。
    本研究中建立一套常壓冷電漿噴射系統用以製備氧化矽薄膜。實驗藉由改變電漿功率、前驅物分壓及產生電漿氣體種類,而調變氧化矽薄膜之厚度、表面型態與化學元素組成。然後再利用掃描式電子顯微鏡、原子力顯微鏡、表面輪廓儀、表面化學分析電子能譜儀、接觸角量測儀…等分析儀器來鑑定氧化矽薄膜之性質。最終,我們可在常壓下以約250 nm/min之鍍膜速率沉積碳含量小於10%的氧化矽薄膜。

    Because the high potential energy and low kinetic energy nature of plasma,lots of chemical reactions which occur only at high temperature situation can happen at room temperature by plasma.Atmospheric discharges do not need to use the expensive vacuum equipments,and is suitable for continuous operations for mass production in industry.The main challenge of this study is to develop a cold atmospheric discharge system for high quality,functional thin film deposition at low temperature.
    In this study,we will establish a atmospheric pressure plasma jet system for silicon oxide thin film deposition. We investigate the effects of power、partial pressure of precursor and working gas on the deposition rate、surface morphology and atomic ratio of silicon oxide film.Then , we analyze the sample by SEM,AFM,α-step,ESCA and contact angle meter.Finally,we can fast deposit silicon oxide film whose carbon element less than 10% at atmospheric pressure.

    中文摘要............................................Ⅰ 英文摘要............................................Ⅱ 誌謝................................................Ⅲ 目錄................................................Ⅴ 表目錄..............................................Ⅹ 圖目錄..............................................XI 第一章 緒論.......................................1 1-1 前言.......................................1 1-2 研究動機與目的.............................2 第二章 理論基礎與文獻回顧.........................5 2-1 二氧化矽性質簡介...........................5 2-2 電漿之簡介.................................6 2-2-1 電漿之行為.................................6 2-2-2 電漿之特性…...............................8 2-3 電漿之分類................................10 2-3-1 非平衡電漿................................11 2-3-1-1 非平衡電漿的定義..........................11 2-3-1-2 非平衡電漿的種類..........................12 2-3-2 平衡電漿..................................16 2-3-2-1 平衡電漿的定義............................16 2-3-2-2 平衡電漿的種類............................17 2-4 常壓電漿..................................17 2-5 常壓冷電漿的分類..........................19 2-6 化學氣相沈積法............................23 2-7 薄膜沈積機制..............................24 2-8 常壓冷電漿鍍膜............................26 第三章 實驗參數與研究方法........................36 3-1 實驗流程..................................36 3-2 實驗系統設計..............................37 3-2-1 實驗系統圖................................37 3-2-2 電極部份..................................38 3-2-3 氣體管路裝置..............................38 3-2-4 流量控制系統..............................38 3-2-5 電源供應器................................39 3-3 實驗氣體與材料............................40 3-3-1 氣體......................................40 3-3-2 基板材料..................................40 3-3-3 實驗藥品..................................41 3-4 實驗步驟..................................41 3-4-1 基板前處理步驟............................41 3-4-2 電漿鍍膜步驟..............................42 3-5 分析與鑑定................................42 3-5-1 成長速率分析..............................42 3-5-2 表面型態觀察..............................42 3-5-3 薄膜化學鍵結及元素組成分析................43 3-5-4 接觸角量測儀..............................44 第四章 常壓電漿噴射系統製備氧化矽薄膜............46 4-1 前言......................................46 4-2 電漿功率對氧化矽薄膜之影響................46 4-2-1 薄膜表面型態及表面粗糙度之分析............46 4-2-2 薄膜元素組成分析..........................47 4-2-3 薄膜成長速率分析..........................48 4-2-4 薄膜親/疏水性分析.........................48 4-3 前驅物分壓對氧化矽薄膜之影響..............54 4-3-1 薄膜表面型態及表面粗糙度之分析............54 4-3-2 薄膜元素組成分析..........................55 4-3-3 薄膜成長速率分析..........................55 4-3-4 薄膜親/疏水性分析.........................55 4-4 電漿噴射氣體種類對氧化矽薄膜之影響........61 4-4-1 薄膜表面型態及表面粗糙度之分析............61 4-4-2 薄膜元素組成分析..........................61 4-4-3 薄膜成長速率分析..........................62 4-4-4 薄膜親/疏水性分析.........................62 第五章 結論......................................67 第六章 參考文獻..................................68 自述與著作.........................................74

    [1] 董家齊、陳寬任:科學發展,第354期, 2002年6月,p52~p59
    [2] 賴耿陽編譯:電漿工學的基礎,復文書局 (2002)
    [3] 羅萬中、林昭憲、高于迦、蔣啟明:電機月刊,第17卷,第11期,2007年11月,p140~p149
    [4] 王執明,塵肺症所關切的礦石:矽石類礦物,行政院勞委會(1989)
    [5] J. R. Roth, Industrial Plasma Engineering-Volume 1 : Principles, Institute of Physics Publishing, London (1995).
    [6] W. Elenbaas, The High Pressure Mercury Vapor Discharge. Amsterdam, The Netherlands, North-Holland (1951)
    [7] B.Chapman, Glow discharge processes, John Wiley & Sons, Inc., 52 (1980)
    [8] B. Eliasson, U. Kogelschatz, IEEE Transaction on Plasma Science, n 6, 19, 1063-1077 (1991)
    [9] J. S. Chang, P. A. Lawless, T. Yamamoto, IEEE Transactions on Plasma Science, vol. 19, no. 6, 1152 (1991)
    [10] U. Kogelschatz, B.Eliasson, W. Egli, Pure Appl. Chem., vol. 71, no. 10, 1819-1828 (1999)
    [11] M. Konuma, Film Deposition by Plasma Techniques, Springer-Verlag, New York (1992)
    [12] M. A. Lieberman , and A. J. Lichtenberg , Principles of Plasma Discharges and Materials Processing, New York, Wiley (1994)
    [13] M. I. Boulos, IEEE Transactions on Plasma Science, vol. 19, no. 6, 1078-1089 (1991)
    [14] 劉志宏、陳志偉、林春宏:化工資訊與商情,第32期,2006年02月,p39~p51
    [15] J. R. Roth, Industrial Plasma Engineering, Philadelphia, PA: IOP, vol. 1, 453–463 (1995)
    [16] S. Kanazawa, M. Kogoma, T. Moriwaki, and S. Okazaki, in Proc. 8th Int. Symp. Plasma Chemistry, Tokyo, Japan, 3, 1839–1844 (1987)
    [17] U. Kogelschatz, IEEE Transactions on Plasma Science, no 4, 30 (2002)
    [18] R. Bartnikass, Brit. J. Appl. Phys., vol. 2, no. 1, 659-661 (1968)
    [19] K. G. Donohoe ,“The Development and Characterization of an Atmospheric pressure Plasma Chemical Reactor,” Ph. D. dissertation, Calif. Inst. Tech., Pasadena CA (1976)
    [20] K. G. Konohoe and T. Wydeven, J. Appl. Polymer Sci., 23, 2591–2601 (1979)
    [21] S. Yagi, M. Hishii, N. Tabata, H. Nagai, and A. Nagai, Laser Eng., vol. 5, no. 3, 171–176 (1977)
    [22] M. Tanaka, S. Yagi, and N. Tabata, in Proc. 8th Ind. Conf Gas Discharges and Their Applications, Oxford, UK, 1, 551–554 (1985)
    [23] K. Yasui, M. Kuzumoto, S. Ogawa, M. Tanaka, and S. Yagi, IEEE J. Quantum Electron., 25, 836–840 (1989)
    [24] H. Nagai, M. Hishii, M. Tanaka, Y. Myoi, H. Wakata, T. Yagi, and N.Tabata, IEEE J. Quantum Electron., 29, 2898–2909 (1993)
    [25] S. Yagi and M. Kuzumoto, Aust. J. Phys., 48, 411–418 (1995)
    [26] S. Kanagawa, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D, Appl. Phys., 21, 838–840 (1988)
    [27] T. Yokoyama, M. Kogoma, T. Moriwaki, and S. Okazaki, J. Phys. D, Appl. Phys., 23, 1125–1128 (1990)
    [28] S. Okazaki, M. Kogoma, M. Uehara, and Y. Kimura, J. Phys. D, Appl. Phys., 26, 889–892 (1993)
    [29] M. Kogoma and S. Okazaki, J. Phys. D, Appl. Phys., 27, 1985–1987 (1994)
    [30] F. Massines, C. Mayoux, R. Messaoudi, A. Rabehi, and P. Ségur, in Proc. 10th Ind. Conf. Gas Dischargesand Their Applications, Swansea, U.K., 2, 730–733 (1992)
    [31] F. Massines, R. B. Gadri, P. Decomps, A. Rabehi, P. Ségur, and C. Mayoux, in Proc. 22rd Int. Conf. Phenomena in Ionized Gases, Hoboken, NJ, 363, 306–315 (1996)
    [32] F. Massines, A. Rabehi, P. Decomps, R. B. Gadri, P. Ségur, and C. Mayoux, J. Appl. Phys., 83, 2950–2957 (1998)
    [33] F. Massines and G. Gouda, J. Phys. D, Appl. Phys., 31, 3411–3420 (1998)
    [34] F. Massines, R. Messaoudi, and C. Mayoux, Plasmas Polymers, 3, 43–59 (1998)
    [35] N. Gherardi, G. Gouda, E. Gat, A. Ricard, and F. Massines, Plasma Sources Sci. Technol., 9, 340–346 (2000)
    [36] J. R. Roth, M. Laroussi, and C. Liu, in Proc. 27th Int. Conf. Plasma Science, Tampa, FL (1992)
    [37] T. C. Montie, K. Kelly-Wintenberg, and J. R. Roth, IEEE Trans. Plasma Sci., 28, 41–50 (2000)
    [38] P. P. Tsai, L. C. Wadsworth, and J. R. Roth, Textile Res. J., 67, 359–369 (1997)
    [39] Koinuma, H. Ohkudo, T. Hashimoto, Appl. Phys. Lett., vol.60, no.7, 816 (1992)
    [40] K. Inomata, H. Ha, K. A. Chaudhary, H. Koinuma, Appl. Phys. Lett., vol. 64, no. 1, 46 (1992)
    [41] R. F. Hicks et al., IEEE Transactions on Plasma Science, vol.26, no.6, 1685 (1998)
    [42] S. E. Babayan, J. Y. Jeong, V. J. Tu, J. Park, G. S. Selwyn and R. F. Hicks, Plasma Sources Sci. Technol., 7, 286-288 (1998)
    [43] J. Park, I. Henins, H. W. Herrmann, G. S. Selwyn, R.F. Hicks, J. Appl. Phys., vol. 89, no. 1, 20-28 (2001)
    [44] G. R. Nowling, S. E. Babayan, V. Jankovic and R. F. Hicks, Plasma Sources Sci. Technol., 11, 97-103 (2002)
    [45] R. F. Hicks et al., United States Patent Application Publication, US2002/0129902 A1
    [46] R. H. Stark and K. H. Schoenbach, J. Appl. Phys., vol.85, no.4, 2075-2080 (1999)
    [47] A. Ei-Habachi and K. H. Schoenbach, Appl. Phys. Lett., 72(1), 22-24 (1997)
    [48] J. G. Eden et al., Appl. Phys. Lett., vol.71, no.9, 1165-1167 (1997)
    [49] J. W. Frame, P. C. John, T. A. DeTemple, and J. G. Eden, Appl. Phys. Lett., vol.72, no.21, 2634-2636 (1998)
    [50] J. G. Eden, C. J. Wagner, J. Gao, N. P. Ostrom, and S. J. Park, Appl. Phys. Lett., vol.79, no.26, 4304-4306 (2001)
    [51] C. J. Wagner, N. P. Ostrom, S. J. Park, J. Gao, and J. G. Eden, IEEE Transactions on Plasma Science, vol.30, no.1, 194-195 (2002)
    [52] H. Barankova et al, Appl. Phys. Lett., vol.76, no.3, 285-287 (2000)
    [53] L. Bardos,and H. Barankova, Surface and Coatings Technology, 133, 522-527 (2000)
    [54] H. Barankova, and L. Bardos, Surface and Coatings Technology, 146, 486-490 (2001)
    [55] H. Barankova, and L. Bardos, Catalysis Today, v 72, 237-241 (2002)
    [56] Yu. Akishev, A. Deryugin, A. Napartovich, N. Trushkin, J. Phys. D: Appl. Phys., vol.26, no.10, 1630-1637 (1993)
    [57] E. E. Kunhardt, IEEE Transactions on Plasma Science, vol.28, no.1, 189 (2000)
    [58] K. S. Nam, S. R. Lee, J. J. Rha, K. H. Lee, and J. K. Kim, United States Patent 6, 441, 554
    [59] S. I. Kim and E. E. Kunhardt, United States Patent 6, 255, 777
    [60] S. I. Kim and E. E. Kunhardt, United States Patent 6, 475, 049
    [61] D. Kim, S. Kim, W. Kokonaski, United States Patent 6, 545, 411
    [62] M. J. Shenton, M. C. Lovell-Hoare and G. C. Stevens, J. Phys. D: Appl. Phys., 34, 2754–2760 (2001)
    [63] M. Laroussi et al., IEEE Transaction on Plasma Science, vol.30, no.1, 158-159 (2002)
    [64]田波明、劉德令:薄膜科學與技術手冊, P1 (1991)
    [65]莊達人:VLSI製造技術, P146~P158 (1995)
    [66] S. Martin and F. Massines , Surface and Coatings Technology, 177~178, 693(2004).
    [67] S. H. Kim and J. H. Kim , Langmuir, 21, 12213(2005).
    [68] E. L. Han and Q. Chen , Machine Disign and Research., 22, 86 (2006).
    [69] S. E. Babayan, J .Y .Jeong and R. F. Hicks, Plasma Source Sci.
    Technol., 7, 286(1998)
    [70] S. E. Babayan, J .Y .Jeong and R. F. Hicks, Plasma Source Sci. Technol., 10, 573(2001)
    [71] J. Benedikt and V. Raballand, Plasma Phys. Control. Fusion , 49,419(2007)
    [72] 羅萬中、林昭憲、李文浚:新型低溫常壓電漿噴流鍍膜系統建立/技術開發,金屬中心技術報告(2005)

    下載圖示 校內:2018-08-28公開
    校外:2018-08-28公開
    QR CODE