簡易檢索 / 詳目顯示

研究生: 李政頤
Li, Jheng-Yi
論文名稱: 以理論與實驗提升矽奈米線陣列之光吸收特性於製備混和型太陽能電池之研究
Numerical and experimental investigations of silicon nanowire arrays with improved light absorption properties for hybrid solar cells
指導教授: 陳嘉勻
Chen, Chia-Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 88
中文關鍵詞: 矽奈米線低反射率有限時域差分法模擬聚苯乙烯奈米球微影效率提升
外文關鍵詞: Silicon nanowire, Light reflectivity, FDTD simulation, polystyrene nanosphere lithography, efficiency improvement
相關次數: 點閱:67下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於光伏元件的應用,實現寬頻帶光波上具有接近於零的反射率為達到高能量轉換效率之太陽能電池的首要目標。現今的表面處理方式,是用於降低太陽光在太陽能電池構造中的光反射率之商業化技術。儘管如此,大約10%的光學損耗仍然歸因於太陽能電池和周圍介質之間的折射率不匹配所造成,這顯著地阻礙了提高光電效率的可能性。因此,在本研究中,系統地研究了具有優異光吸收能力的矽(Si)奈米線陣列結構,潛在地克服這些關鍵問題。通過有限時域差分法(FDTD)模擬,揭示了Si奈米線結構參數(包括直徑,長度和間距)對光捕獲能力的影響。在奈米線陣列的週期性以及電場分佈方面的相互因素被建模以優化所具有的光學特性,並進一步闡明了其基本機制,以完全理解奈米等級的結構依賴性。預計這些結果實際上將指導用於高性能光伏應用的奈米線設計。
    此外,本研究藉由實驗和模擬可視化矽奈米線結構的光學吸收特性以應用於太陽能電池中,搭配低成本的奈米球微影方法與濕式金屬輔助化學蝕刻技術的結合,以實現具有精確尺寸的矽奈米線陣列的調控,這使我們能夠優化混合太陽能電池的光捕獲效應,模擬計算結果和製作設計上對於低成本且穩定的高性能太陽能電池具有很大潛力。

    A low cost nanosphere lithographic method in combination with wet chemical etching technique were performed to realize the controlled formation of silicon nanowire arrays with precisely defined dimensions. Designs of nanostructures were modeled with FDTD analysis, which enabled us to optimize the light-trapping effects of hybrid solar cells. The results along with design strategy were anticipated to be highly potential for the low-cost, simplified and reliable high-performance solar cells. Therefore, the enhanced light absorption of silicon nanowire arrays can be effectively observed under wide wavelengths of incident light by tuning their diameters and spacing modeled by FDTD simulation. As a consequence, the ultimate efficiency of nanowire-based solar cells can reach 36.8% based on the optimized structural designs of nanowire structures, which is quite promising for the development of next-generation photovoltaic cells with superior optoelectronic properties.

    中文摘要.....I Extended Abstract.....II 目錄.....XII 表目錄.....XVII 圖目錄.....XVIII 第一章、 緒論.....1 1.1 前言.....1 1.2 太陽能電池的發展.....3 1.3 太陽能電池抗反射層之簡介.....6 1.4 研究動機與目的.....15 第二章、 文獻回顧.....16 2.1 奈米結構的應用.....16 2.2 奈米陣列的種類.....17 2.3 太陽能電池的介紹.....19 2.3.1 矽晶太陽能電池.....20 2.3.2 有機太陽能電池.....21 2.3.3 混和型太陽能電池.....21 2.3.4 太陽光譜.....22 2.3.5 太陽能電池工作原理.....24 2.3.6 大氣質量.....25 2.3.7太陽能電池電性參數.....26 2.3.8 太陽能電池的光電轉換效率.....28 2.4 有限時域差分法.....29 2.4.1 有限時域差分法基本概念.....29 2.4.2 有限差分法的基本架構與理論.....29 2.4.3 馬克斯威爾方程式的有限時域差分法演算結構.....31 2.5 聚苯乙烯奈米球微影.....34 2.5.1 聚苯乙烯.....34 2.5.2 高分子微球.....34 2.5.3聚苯乙烯微球.....35 2.6 蝕刻方式介紹.....37 第三章、 實驗方法與分析設備.....38 3.1 模擬結構設計.....38 3.2 模擬參數設置.....39 3.3 實驗流程.....42 3.3.1微影方法.....42 3.3.2蝕刻流程.....42 3.4實驗儀器.....44 3.4.1精密天平(Precision Balances).....44 3.4.2旋轉塗佈機(Spin Coater).....44 3.4.3冷場發射掃描式電子顯微鏡及能量散佈光譜儀(FE-SEM) .....44 3.4.4 伺服器等級桌上型電腦.....44 3.4.5電子束蒸鍍系統(Electron Beam Evaporation System) .....45 3.4.6 反應式離子蝕刻機.....45 第四章、 結果與討論.....47 4.1 薄膜型基板.....47 4.1.1 薄膜基板光譜與矽乃米線陣列結構光譜比較.....48 4.1.2 矽奈米線陣列結構模擬分析.....50 4.1.3長度對矽奈米線陣列結構之探討.....52 4.1.4 調變直徑探討長度對矽奈米線陣列的光學吸收.....56 4.1.5 由間距調變探討長度對矽奈米線陣列的光學吸收性之影響.....57 4.1.6 直徑以及間距對於矽奈米線陣列結構之光學影響.....59 4.1.7 模擬計算太陽能電池最終效率.....63 4.2 無穿透基板.....64 4.3 總結.....69 4.4.1 聚苯乙烯球自組裝單層結構製程.....70 4.4.2 表面形貌分析.....78 第五章、 結論.....81 第六章、 未來規劃.....82 第七章、 參考文獻.....83

    [1]Wilson, S. J., and M. C. Hutley. "The optical properties of'moth eye'antireflection surfaces." Optica acta: International journal of optics 29.7: 993-1009 (1982).
    [2]Feit, M. D., and J. A. Fleck. "Light propagation in graded-index optical fibers." Applied optics 17.24: 3990-3998 (1978).
    [3]Weeks, Mary Elvira. "The discovery of the elements. XII. Other elements isolated with the aid of potassium and sodium: Beryllium, boron, silicon, and aluminum." Journal of Chemical Education 9.8: 1386 (1932).
    [4]Voronkov, M. G. "Silicon era." Russian Journal of Applied Chemistry 80.12: 2190-2196 (2007).
    [5]Franklin, Evan, et al. "Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell." Progress in Photovoltaics: research and applications 24.4: 411-427 (2016).
    [6]Masuko, Keiichiro, et al. "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell." IEEE Journal of Photovoltaics 4.6: 1433-1435 (2014).
    [7]Green, Martin A., et al. "Solar cell efficiency tables (version 37)." Progress in photovoltaics: research and applications 19.1: 84-92 (2011).
    [8]Raut, Hemant Kumar, et al. "Anti-reflective coatings: A critical, in-depth review." Energy & Environmental Science 4.10: 3779-3804 (2011).
    [9]Priyadarshini, B. Geetha, and A. K. Sharma. "Design of multi-layer anti-reflection coating for terrestrial solar panel glass." Bulletin of Materials Science 39.3: 683-689 (2016).
    [10]Al-Husseini, Ammar Mahmoud, and Bashar Lahlouh. "Silicon Pyramid Structure as a Reflectivity Reduction Mechanism." Journal of Applied Sciences 17.8: 374-383 (2017).
    [11]Park, Kwang-Tae, et al. "13.2% efficiency Si nanowire/PEDOT: PSS hybrid solar cell using a transfer-imprinted Au mesh electrode." Scientific reports 5: 12093 (2015).
    [12]Ozdemir, Baris, et al. "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires." Nanotechnology 22.15: 155606 (2011).
    [13]Hobbs, D. S.; MacLeod, B. D.; Riccobono, J. R. In Update on the development of high performance anti-reflecting surface relief micro-structures, Window and Dome Technologies and Materials X, International Society for Optics and Photonics:; p 65450Y (2007).
    [14]Dobrowolski, J.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M., Toward perfect antireflection coatings: numerical investigation. Applied optics, 41 (16), 3075-3083 (2002).
    [15]Green, M. A., The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17 (3), 183-189 (2009).
    [16]Tsakalakos, L.; Balch, J. E.; Fronheiser, J.; Shih, M.-Y.; LeBoeuf, S. F.; Pietrzykowski, M.; Codella, P. J.; Korevaar, B. A.; Sulima, O.; Rand, J., Strong broadband optical absorption in silicon nanowire films. Journal of Nanophotonics, 1 (1), 013552 (2007).
    [17]Lu, W.; Wang, C.; Yue, W.; Chen, L., Si/PEDOT: PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale, 3 (9), 3631-3634 (2011).
    [18]Sturmberg, B. r. C.; Dossou, K. B.; Botten, L. C.; Asatryan, A. A.; Poulton, C. G.; McPhedran, R. C.; De Sterke, C. M., Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach. Acs Photonics, 1 (8), 683-689 (2014).
    [19]Foldyna, M.; Togonal, A. S.; i Cabarrocas, P. R., Optimization and optical characterization of vertical nanowire arrays for core-shell structure solar cells. Solar Energy Materials and Solar Cells, 159, 640-648 (2017).
    [20]Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano letters, 9 (1), 279-282 (2008).
    [21]Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 15 (5), 353-389 (2003).
    [22]Huang, Z.; Fang, H.; Zhu, J., Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced materials, 19 (5), 744-748 (2007).
    [23]Jeong, Sangmoo, et al. "Hybrid silicon nanocone–polymer solar cells." Nano letters 12.6: 2971-2976 (2012).
    [24]Zhou, Yanli, et al. "Novel mesoporous silicon nanorod as an anode material for lithium ion batteries." Electrochimica Acta 127: 252-258 (2014).
    [25]Liu, D.; Xiang, Y.; Wu, X.; Zhang, Z.; Liu, L.; Song, L.; Zhao, X.; Luo, S.; Ma, W.; Shen, J., Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano letters, 6 (10), 2375-2378 (2006).
    [26]Ko, M.-D.; Rim, T.; Kim, K.; Meyyappan, M.; Baek, C.-K., High efficiency silicon solar cell based on asymmetric nanowire. Scientific reports, 5, 11646 (2015).
    [27]Nahidi, M.; Kolasinski, K. W., Effects of stain etchant composition on the photoluminescence and morphology of porous silicon. Journal of The Electrochemical Society, 153 (1), C19-C26 (2006).
    [28]Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied Physics Letters 4.5: 89-90 (1964).
    [29]Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U., Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced materials, 23 (2), 285-308 (2011).
    [30]Ye, X.; Qi, L., Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas. Science China Chemistry, 57 (1), 58-69 (2004).
    [31]Weekes, S. M.; Ogrin, F. Y.; Murray, W. A.; Keatley, P. S., Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir, 23 (3), 1057-1060 (2007).
    [32]Rybczynski, J.; Ebels, U.; Giersig, M., Large-scale, 2D arrays of magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219 (1-3), 1-6 (2003).
    [33]Cheung, C. L.; Nikolić, R.; Reinhardt, C.; Wang, T., Fabrication of nanopillars by nanosphere lithography. Nanotechnology, 17 (5), 1339 (2006).
    [34]Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 36). Progress in photovoltaics: research and applications, 18 (5), 346 (2010).
    [35]Conversion efficiencies of best research solar cells worldwide for various photovoltaic technologies since 1976. National Renewable Energy Laboratory (NREL).
    [36]Green, Martin A. "The path to 25% silicon solar cell efficiency: history of silicon cell evolution." Progress in Photovoltaics: Research and Applications 17.3: 183-189 (2009).
    [37]Jeong, H.; Song, H.; Pak, Y.; Kwon, I. K.; Jo, K.; Lee, H.; Jung, G. Y., Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Advanced Materials, 26 (21), 3445-3450 (2004).
    [38]Lapidus, L.; Pinder, G. F., Numerical solution of partial differential equations in science and engineering. John Wiley & Sons: (2011).
    [39]Fang, J.; Xeu, D., Numerical errors in the computation of impedances by the FDTD method and ways to eliminate them. IEEE microwave and guided wave letters, 5 (1), 6-8 (1995).
    [40]Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14 (3), 302-307 (1966).
    [41]Taflove, A.; Hagness, S. C., Computational electrodynamics: the finite-difference time-domain method. Artech house: 2005.

    [42]Chen, J.; Dong, P.; Di, D.; Wang, C.; Wang, H.; Wang, J.; Wu, X., Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating. Applied Surface Science, 270, 6-15 (2013).

    下載圖示 校內:2023-08-30公開
    校外:2023-08-30公開
    QR CODE