| 研究生: |
李政頤 Li, Jheng-Yi |
|---|---|
| 論文名稱: |
以理論與實驗提升矽奈米線陣列之光吸收特性於製備混和型太陽能電池之研究 Numerical and experimental investigations of silicon nanowire arrays with improved light absorption properties for hybrid solar cells |
| 指導教授: |
陳嘉勻
Chen, Chia-Yun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 88 |
| 中文關鍵詞: | 矽奈米線 、低反射率 、有限時域差分法模擬 、聚苯乙烯奈米球微影 、效率提升 |
| 外文關鍵詞: | Silicon nanowire, Light reflectivity, FDTD simulation, polystyrene nanosphere lithography, efficiency improvement |
| 相關次數: | 點閱:67 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於光伏元件的應用,實現寬頻帶光波上具有接近於零的反射率為達到高能量轉換效率之太陽能電池的首要目標。現今的表面處理方式,是用於降低太陽光在太陽能電池構造中的光反射率之商業化技術。儘管如此,大約10%的光學損耗仍然歸因於太陽能電池和周圍介質之間的折射率不匹配所造成,這顯著地阻礙了提高光電效率的可能性。因此,在本研究中,系統地研究了具有優異光吸收能力的矽(Si)奈米線陣列結構,潛在地克服這些關鍵問題。通過有限時域差分法(FDTD)模擬,揭示了Si奈米線結構參數(包括直徑,長度和間距)對光捕獲能力的影響。在奈米線陣列的週期性以及電場分佈方面的相互因素被建模以優化所具有的光學特性,並進一步闡明了其基本機制,以完全理解奈米等級的結構依賴性。預計這些結果實際上將指導用於高性能光伏應用的奈米線設計。
此外,本研究藉由實驗和模擬可視化矽奈米線結構的光學吸收特性以應用於太陽能電池中,搭配低成本的奈米球微影方法與濕式金屬輔助化學蝕刻技術的結合,以實現具有精確尺寸的矽奈米線陣列的調控,這使我們能夠優化混合太陽能電池的光捕獲效應,模擬計算結果和製作設計上對於低成本且穩定的高性能太陽能電池具有很大潛力。
A low cost nanosphere lithographic method in combination with wet chemical etching technique were performed to realize the controlled formation of silicon nanowire arrays with precisely defined dimensions. Designs of nanostructures were modeled with FDTD analysis, which enabled us to optimize the light-trapping effects of hybrid solar cells. The results along with design strategy were anticipated to be highly potential for the low-cost, simplified and reliable high-performance solar cells. Therefore, the enhanced light absorption of silicon nanowire arrays can be effectively observed under wide wavelengths of incident light by tuning their diameters and spacing modeled by FDTD simulation. As a consequence, the ultimate efficiency of nanowire-based solar cells can reach 36.8% based on the optimized structural designs of nanowire structures, which is quite promising for the development of next-generation photovoltaic cells with superior optoelectronic properties.
[1]Wilson, S. J., and M. C. Hutley. "The optical properties of'moth eye'antireflection surfaces." Optica acta: International journal of optics 29.7: 993-1009 (1982).
[2]Feit, M. D., and J. A. Fleck. "Light propagation in graded-index optical fibers." Applied optics 17.24: 3990-3998 (1978).
[3]Weeks, Mary Elvira. "The discovery of the elements. XII. Other elements isolated with the aid of potassium and sodium: Beryllium, boron, silicon, and aluminum." Journal of Chemical Education 9.8: 1386 (1932).
[4]Voronkov, M. G. "Silicon era." Russian Journal of Applied Chemistry 80.12: 2190-2196 (2007).
[5]Franklin, Evan, et al. "Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell." Progress in Photovoltaics: research and applications 24.4: 411-427 (2016).
[6]Masuko, Keiichiro, et al. "Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell." IEEE Journal of Photovoltaics 4.6: 1433-1435 (2014).
[7]Green, Martin A., et al. "Solar cell efficiency tables (version 37)." Progress in photovoltaics: research and applications 19.1: 84-92 (2011).
[8]Raut, Hemant Kumar, et al. "Anti-reflective coatings: A critical, in-depth review." Energy & Environmental Science 4.10: 3779-3804 (2011).
[9]Priyadarshini, B. Geetha, and A. K. Sharma. "Design of multi-layer anti-reflection coating for terrestrial solar panel glass." Bulletin of Materials Science 39.3: 683-689 (2016).
[10]Al-Husseini, Ammar Mahmoud, and Bashar Lahlouh. "Silicon Pyramid Structure as a Reflectivity Reduction Mechanism." Journal of Applied Sciences 17.8: 374-383 (2017).
[11]Park, Kwang-Tae, et al. "13.2% efficiency Si nanowire/PEDOT: PSS hybrid solar cell using a transfer-imprinted Au mesh electrode." Scientific reports 5: 12093 (2015).
[12]Ozdemir, Baris, et al. "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires." Nanotechnology 22.15: 155606 (2011).
[13]Hobbs, D. S.; MacLeod, B. D.; Riccobono, J. R. In Update on the development of high performance anti-reflecting surface relief micro-structures, Window and Dome Technologies and Materials X, International Society for Optics and Photonics:; p 65450Y (2007).
[14]Dobrowolski, J.; Poitras, D.; Ma, P.; Vakil, H.; Acree, M., Toward perfect antireflection coatings: numerical investigation. Applied optics, 41 (16), 3075-3083 (2002).
[15]Green, M. A., The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Progress in Photovoltaics: Research and Applications, 17 (3), 183-189 (2009).
[16]Tsakalakos, L.; Balch, J. E.; Fronheiser, J.; Shih, M.-Y.; LeBoeuf, S. F.; Pietrzykowski, M.; Codella, P. J.; Korevaar, B. A.; Sulima, O.; Rand, J., Strong broadband optical absorption in silicon nanowire films. Journal of Nanophotonics, 1 (1), 013552 (2007).
[17]Lu, W.; Wang, C.; Yue, W.; Chen, L., Si/PEDOT: PSS core/shell nanowire arrays for efficient hybrid solar cells. Nanoscale, 3 (9), 3631-3634 (2011).
[18]Sturmberg, B. r. C.; Dossou, K. B.; Botten, L. C.; Asatryan, A. A.; Poulton, C. G.; McPhedran, R. C.; De Sterke, C. M., Optimizing photovoltaic charge generation of nanowire arrays: a simple semi-analytic approach. Acs Photonics, 1 (8), 683-689 (2014).
[19]Foldyna, M.; Togonal, A. S.; i Cabarrocas, P. R., Optimization and optical characterization of vertical nanowire arrays for core-shell structure solar cells. Solar Energy Materials and Solar Cells, 159, 640-648 (2017).
[20]Zhu, J.; Yu, Z.; Burkhard, G. F.; Hsu, C.-M.; Connor, S. T.; Xu, Y.; Wang, Q.; McGehee, M.; Fan, S.; Cui, Y., Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano letters, 9 (1), 279-282 (2008).
[21]Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y.; Kim, F.; Yan, H., One‐dimensional nanostructures: synthesis, characterization, and applications. Advanced materials, 15 (5), 353-389 (2003).
[22]Huang, Z.; Fang, H.; Zhu, J., Fabrication of silicon nanowire arrays with controlled diameter, length, and density. Advanced materials, 19 (5), 744-748 (2007).
[23]Jeong, Sangmoo, et al. "Hybrid silicon nanocone–polymer solar cells." Nano letters 12.6: 2971-2976 (2012).
[24]Zhou, Yanli, et al. "Novel mesoporous silicon nanorod as an anode material for lithium ion batteries." Electrochimica Acta 127: 252-258 (2014).
[25]Liu, D.; Xiang, Y.; Wu, X.; Zhang, Z.; Liu, L.; Song, L.; Zhao, X.; Luo, S.; Ma, W.; Shen, J., Periodic ZnO nanorod arrays defined by polystyrene microsphere self-assembled monolayers. Nano letters, 6 (10), 2375-2378 (2006).
[26]Ko, M.-D.; Rim, T.; Kim, K.; Meyyappan, M.; Baek, C.-K., High efficiency silicon solar cell based on asymmetric nanowire. Scientific reports, 5, 11646 (2015).
[27]Nahidi, M.; Kolasinski, K. W., Effects of stain etchant composition on the photoluminescence and morphology of porous silicon. Journal of The Electrochemical Society, 153 (1), C19-C26 (2006).
[28]Wagner, R. S., and W. C. Ellis. "Vapor‐liquid‐solid mechanism of single crystal growth." Applied Physics Letters 4.5: 89-90 (1964).
[29]Huang, Z.; Geyer, N.; Werner, P.; De Boor, J.; Gösele, U., Metal‐Assisted Chemical Etching of Silicon: A Review: In memory of Prof. Ulrich Gösele. Advanced materials, 23 (2), 285-308 (2011).
[30]Ye, X.; Qi, L., Recent advances in fabrication of monolayer colloidal crystals and their inverse replicas. Science China Chemistry, 57 (1), 58-69 (2004).
[31]Weekes, S. M.; Ogrin, F. Y.; Murray, W. A.; Keatley, P. S., Macroscopic arrays of magnetic nanostructures from self-assembled nanosphere templates. Langmuir, 23 (3), 1057-1060 (2007).
[32]Rybczynski, J.; Ebels, U.; Giersig, M., Large-scale, 2D arrays of magnetic nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 219 (1-3), 1-6 (2003).
[33]Cheung, C. L.; Nikolić, R.; Reinhardt, C.; Wang, T., Fabrication of nanopillars by nanosphere lithography. Nanotechnology, 17 (5), 1339 (2006).
[34]Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W., Solar cell efficiency tables (version 36). Progress in photovoltaics: research and applications, 18 (5), 346 (2010).
[35]Conversion efficiencies of best research solar cells worldwide for various photovoltaic technologies since 1976. National Renewable Energy Laboratory (NREL).
[36]Green, Martin A. "The path to 25% silicon solar cell efficiency: history of silicon cell evolution." Progress in Photovoltaics: Research and Applications 17.3: 183-189 (2009).
[37]Jeong, H.; Song, H.; Pak, Y.; Kwon, I. K.; Jo, K.; Lee, H.; Jung, G. Y., Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Advanced Materials, 26 (21), 3445-3450 (2004).
[38]Lapidus, L.; Pinder, G. F., Numerical solution of partial differential equations in science and engineering. John Wiley & Sons: (2011).
[39]Fang, J.; Xeu, D., Numerical errors in the computation of impedances by the FDTD method and ways to eliminate them. IEEE microwave and guided wave letters, 5 (1), 6-8 (1995).
[40]Yee, K., Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media. IEEE Transactions on antennas and propagation, 14 (3), 302-307 (1966).
[41]Taflove, A.; Hagness, S. C., Computational electrodynamics: the finite-difference time-domain method. Artech house: 2005.
[42]Chen, J.; Dong, P.; Di, D.; Wang, C.; Wang, H.; Wang, J.; Wu, X., Controllable fabrication of 2D colloidal-crystal films with polystyrene nanospheres of various diameters by spin-coating. Applied Surface Science, 270, 6-15 (2013).