| 研究生: |
蔡姿璇 Tsai, Tzu-Hsuan |
|---|---|
| 論文名稱: |
可重複使用之包裝空箱庫存規劃模型之研究-以觸控面板製造廠為例 An Inventory Planning Model for Reusable Containers- A Case Study of Touch Panel Manufacturer |
| 指導教授: |
王逸琳
Wang, I-Lin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 空箱調運 、整數規劃 、庫存管理 、循環經濟 |
| 外文關鍵詞: | Reusable Container, Repositioning, Integer Programming, Inventory, Cicular Economy |
| 相關次數: | 點閱:94 下載:23 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
循環經濟議題近年越來越受到產業界的重視,如何將有價資源再使用並妥善管理,藉此拉長該有價資源的生命週期,降低生產成本,達到循環經濟的概念,是許多國家與企業重要的課題。本研究主要針對公司產品出貨所需之能重複使用的包裝空箱(或稱包材空箱)進行庫存控管的研究與預估,此問題與海運的空箱調運問題類似。由於市場上客戶訂單經常變動,易造成出貨用的包裝空箱短缺或爆量等出貨需求與庫存週轉的失衡。若能妥善調度包裝空箱,即可重複使用這些閒置資源,實踐循環經濟。本研究針對包裝空箱的調度與庫存管理決策建構整數規劃模型,將包裝空箱的倉儲限制、庫存成本、採購成本、物流成本、物流時程等參數納入考量,在務必滿足所預估的出貨需求前提下,利用最佳化軟體Gurobi求解本研究建構之整數規劃模型,以便管理者以最小總成本為目標來求解本廠出貨端與後段廠、友廠、客戶、包裝空箱商之間的最佳空箱調度與庫存數量等物流決策。最後,本研究以實際案例的資料為基礎,模擬60-180天的需求測資,進行整數規劃模型求解與敏感度分析等測試。與實際企業運作方式比較驗證後,確認本研究發展的整數規劃模型可提供不錯的決策建議,並可協助公司針對不同的需求或價格變化情境預做沙盤推演,可協助擬定與評估突發狀況的決策處理方式。
Due to the frequent changes in customer orders in the market, it is easy to cause an imbalance between the planned production, inventory, and real demands. As a result, the empty containers used to ship products also need to deal with the imbalanced shipping requirement. This thesis investigates the circular logistics of reusable containers for touch panel manufacturers. In particular, the containers can be repositioned between the manufacturer and other plants in advance in order to save the costs of making new containers. This is an important practice in the circular economy. To this end, this thesis proposed an integer programming model for the scheduling and routing of these reusable containers at different places and times. We use a rolling-horizon framework that solves the optimal repositioning plan of minimum total weighted costs for the given 180-day forecasted demands. Sensitivity analysis is conducted and analyzed. After comparing and verifying the actual enterprise operational plans, it is confirmed that our proposed integer programming model can provide good decision-making suggestions and can assist the companies to have better preparation for different scenarios of forecasted parameters.
Agarwal, R., & Ergun, Ö. (2008). Ship scheduling and network design for cargo routing in liner shipping. Transportation Science, 42(2), 175-196.
Alvarez, J. F. (2009). Joint routing and deployment of a fleet of container vessels. Maritime Economics & Logistics, 11(2), 186-208.
Atamer, B., Bakal, İ. S., & Bayındır, Z. P. (2013). Optimal pricing and production decisions in utilizing reusable containers. International Journal of Production Economics, 143(2), 222-232.
Bell, M. G., Liu, X., Angeloudis, P., Fonzone, A., & Hosseinloo, S. H. (2011). A frequency-based maritime container assignment model. Transportation Research Part B: Methodological, 45(8), 1152-1161.
Breen, L. (2006). Give me back my empties or else! A preliminary analysis of customer compliance in reverse logistics practices (UK). Management Research News29(9), 532–551.
Cheung, R. K., & Chen, C. Y. (1998). A two-stage stochastic network model and solution methods for the dynamic empty container allocation problem. Transportation science, 32(2), 142-166.
Christiansen, M., Fagerholt, K., & Ronen, D. (2004). Ship routing and scheduling: Status and perspectives. Transportation science, 38(1), 1-18.
Crainic, T. G., Gendreau, M., & Dejax, P. (1993). Dynamic and stochastic models for the allocation of empty containers. Operations research, 41(1), 102-126.
Di Francesco, M., Lai, M., & Zuddas, P. (2013). Maritime repositioning of empty containers under uncertain port disruptions. Computers & Industrial Engineering, 64(3), 827-837.
Inderfurth, K., & Langella, I. M. (2006). Heuristics for solving disassemble-to-order problems with stochastic yields. Or Spectrum, 28(1), 73-99.
Kelle, P., & Silver, E. A. (1989). Forecasting the returns of reusable containers. Journal of Operations Management, 8(1), 17-35.
Kim, T., Glock, C. H., & Kwon, Y. (2014). A closed-loop supply chain for deteriorating products under stochastic container return times. Omega, 43, 30-40.
Klausner, M., & Hendrickson, C. T. (2000). Reverse-logistics strategy for product take-back. Interfaces, 30(3), 156-165.
Lam, S. W., Lee, L. H., & Tang, L. C. (2007). An approximate dynamic programming approach for the empty container allocation problem. Transportation Research Part C: Emerging Technologies, 15(4), 265-277.
Mason, A., Shaw, A., & Al-Shamma'a, A. (2012). Peer-to-peer inventory management of returnable transport items: A design science approach. Computers in Industry, 63(3), 265-274.
Meng, Q., & Wang, X. (2011). Intermodal hub-and-spoke network design: incorporating multiple stakeholders and multi-type containers. Transportation Research Part B: Methodological, 45(4), 724-742.
Pearce, D. W., Turner, R. K., & Turner, R. K. (1990). Economics of natural resources and the environment. Johns Hopkins University Press.
Schrady, D. A. (1967). A deterministic inventory model for reparable items. Naval Research Logistics Quarterly, 14(3), 391-398.
Schulz, T., & Ferretti, I. (2011). On the alignment of lot sizing decisions in a remanufacturing system in the presence of random yield. Journal of Remanufacturing, 1(1), 1-11.
Shen, W. S., & Khoong, C. M. (1995). A DSS for empty container distribution planning. Decision Support Systems, 15(1), 75-82.
Sheu, J. B., & Talley, W. K. (2011). Green supply chain management: trends, challenges, and solutions. Transportation Research Part E, 6(47), 791-792.
Song, D. P. (2007). Characterizing optimal empty container reposition policy in periodic-review shuttle service systems. Journal of the Operational Research Society, 58(1), 122-133.
Tang, O., & Grubbström, R. W. (2005). Considering stochastic lead times in a manufacturing/remanufacturing system with deterministic demands and returns. International Journal of Production Economics, 93, 285-300.
Teunter, R. H. (2001). Economic ordering quantities for recoverable item inventory systems. Naval Research Logistics (NRL), 48(6), 484-495.
Wang, S., & Meng, Q. (2011). Schedule design and container routing in liner shipping. Transportation Research Record, 2222(1), 25-33.
Yan, S., Chen, C. Y., & Lin, S. C. (2009). Ship scheduling and container shipment planning for liners in short-term operations. Journal of marine science and technology, 14(4), 417-435.
Yun, W. Y., Lee, Y. M., & Choi, Y. S. (2011). Optimal inventory control of empty containers in inland transportation system. International Journal of Production Economics, 133(1), 451-457.