| 研究生: |
王俊傑 Wang, Chun-Chieh |
|---|---|
| 論文名稱: |
從實驗室到現場-認知挑戰對團隊運動員的敏捷表現之影響 Effect of cognitive challenge on agility performance in team sports athletes: Evidence from the lab and the field |
| 指導教授: |
王駿濠
Wang, Chun-Hao |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 團隊運動員 、敏捷 、抑制控制 、視覺空間工作記憶 、認知挑戰敏捷任務 |
| 外文關鍵詞: | Team sports athlete, Agility, Inhibitory control, Visuospatial working memory, Cognitively challenging agility task |
| 相關次數: | 點閱:110 下載:16 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
背景:團隊運動比賽是一種具有認知需求、需要動作-認知多工處理且有時間限制的環境。運動員們在比賽過程中需要對外界刺激做出適當的決策判斷,並執行出變換動作方向和速度的反應。因此,團隊運動員的敏捷和認知決策能力(例如:抑制控制、視覺空間工作記憶)對於運動的成功至關重要。此外,近期有研究將認知挑戰整合到功能性動作任務中,發展出接近於運動情境下的認知-動作表現任務,有效挑戰運動員於實地場域的認知及動作能力。鑑於此,本研究開發了兩個具有認知挑戰的敏捷任務,來研究團隊運動員於場域中的認知及敏捷表現。目的:本研究為了探討團隊運動員完成具認知挑戰的敏捷任務的結果,是否有受到認知負荷而影響其敏捷表現,以及了解於實地現場中認知挑戰敏捷任務所測得的認知表現結果與實驗室內測得的認知功能測量結果之間的潛在關係。方法:招募19名具有足球專業經驗 6.53 ± 2.04年的男性國中團隊運動員(年齡為13.63 ± 0.83歲)參加本研究。參與者完成了身體適能檢測、實驗室內電腦版的認知功能測量(側翼任務和區塊敲擊跨度任務)、一般性敏捷任務和具有認知挑戰的敏捷任務。結果:根據研究結果發現參與者進行具有側翼挑戰的Y型敏捷性任務中,一致和不一致試驗之間的準確率、決策時間和完成敏捷總時間有出顯著性差異。令人意外的是,具有側翼挑戰的Y型敏捷任務的抑制控制表現與實驗室測得的抑制控制表現之間沒有顯著性相關。另一方面,於涉及視覺空間工作記憶挑戰的扇形穿梭跑敏捷任務中,在跑3個定點、跑4個定點和跑5個定點中所完成的總敏捷時間有顯著性長於不涉及視覺空間工作記憶需求的相同敏捷任務。此外,於實驗室內和現場測得的視覺空間工作記憶表現之間存在顯著性相關。結論:根據上述結果,團隊運動員的場上敏捷任務表現會受到認知需求增加而影響。即使於認知挑戰的敏捷任務中有觀察到側翼效應,但運動員在實驗室內的抑制控制能力並不能直接表示此類敏捷任務中的抑制控制能力。另一方面,將視覺空間工作記憶任務整合於敏捷性任務中會影響其整體敏捷表現,而且運動員在實驗室內的視覺空間工作記憶能力可能與其現場的視覺空間記憶表現有關。因此,本研究新設計的認知挑戰敏捷任務可能有潛力反映運動員場上的認知及敏捷表現,這可為專業教練和專家提供一個新的表現參數,以了解團隊運動員於場上的認知及敏捷表現。從本研究的結果及設計想法來看,或許可為教練提供新的寶貴見解,來制定訓練內容或評量團隊運動員的才能和表現。還有,從本研究結果得知不同的任務設計可能會產生不同的結果,這需要在未來加以考量。
Introduction: A team sports context is a cognitively demanding, motor-cognitive multitasking, and temporally constrained environment where athletes require reactively change direction and speed in response to external stimuli through the decision-making. Consequently, athletes' agility and cognitive abilities (e.g., inhibitory control, visuospatial working memory) are important for the success in sport. Moreover, athletes' functional assessment and training drills now incorporate cognitive challenges into movement tasks, effectively challenging both their physical and cognitive abilities. In light of this, the intention of the current study is to develop two innovative agility tasks that involving cognitive challenges. These tasks provide an opportunity to examine the performance of team sports athletes in terms of their cognition and agility on the field. Purpose: The aims are to examine how simultaneous cognitive challenges, such as inhibition control and visuospatial working memory, may impact agility performance, and to investigate the potential correlation between the cognitive outcomes of these cognitively demanding agility tasks performed in real-world conditions and the results obtained from cognitive function measures conducted in a laboratory setting. Method: Nineteen male junior high school soccer players, aged 13.63 ± 0.83 years, with an average of 6.53 ± 2.04 years of professional soccer experience, were recruited to participate in our study. The participants had completed physical fitness tests, computerized lab-based measurements of cognitive function (the flanker task and the Corsi block span task), the general agility tasks, and the cognitively challenging agility tasks. Result: Soccer players performing the Y-shaped agility with flanker tasks displayed significant differences in accuracy, decision time, and overall total time between congruent and incongruent trials. Unexpectedly, no correlation was observed between cognitive function performance in the Y-shaped agility with flanker task and the inhibitory control measured in the laboratory. In the fan-shaped shuttle run agility tasks, cognitively challenging tasks involving visuospatial working memory took significantly longer to complete in series 3, series 4, and series 5 compared to the same agility tasks without visuospatial working memory demands. Moreover, a significant correlation was found between the measures of visuospatial working memory performance obtained in the laboratory and in the field. Conclusion: The results revealed that increased cognitive demands impact the agility performance of team sport athletes. Although the flanker effect appears in the cognitively challenging agility task, the performances of soccer players on lab-based inhibitory control assessment do not indicate their performances during such agility task. Integrating visuospatial working memory tasks into the agility task affects performance, and soccer players’ the exhibited visuospatial working memory capabilities in the laboratory may be linked to their cognitive performance on the field. Consequently, integrating cognitive challenges into agility tasks provides new parameters for professional coaches and specialists to better understand athletes’ performance on field, while also offering valuable insights for tailoring training drills and assessments for talent identification and performance development in team sports athletes. From the results of the cognitively challenge agility tasks we designed, it was found that different task designs may yield varying effects, emphasizing the need to consider this in the future.
Alves, H., Voss, M.W., Boot, W.R., Deslandes, A., Cossich, V., Salles, J.I., Kramer, A.F. (2013). Perceptual-cognitive expertise in elite volleyball players. Frontiers in Psychology. 4, 36. doi: 10.3389/fpsyg.2013.00036.
Abe, Y., Ambe, H., Okuda, T., Nakayama, M., & Morita, N. (2022). Reliability and Validity of a Novel Reactive Agility Test with Soccer Goalkeeper-Specific Movements. Sports, 10(11), 169. https://doi.org/10.3390/sports10110169
Benton, A., & Tranel, D. (1993). Visuoperceptual, Visuospatial, and Visuoconstructive Disorders. In K. M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (2nd ed.). Oxford University Press.
Borg, G. (1998). The Borg CR10 Scale. In Borg's perceived exertion and pain scales (pp. 39-43). Human kinetics.
Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Beck depression inventory (BDI-II) (Vol. 10, No. 3). London, UK: Pearson.
Berlinger, W.G., Potter, J.F. (1991). Low Body Mass Index in demented outpatients. Journal of the American Geriatrics Society. 39(10), 973-8. doi: 10.1111/j.1532-5415.1991.tb04043.x.
Baddeley, A. D., & Hitch, G. (1974). Working memory. In Psychology of learning and motivation. 8, 47-89. https://doi.org/10.1016/S0079-7421(08)60452-1
Buysse, D. J., Reynolds III, C. F., Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193-213.
Brown, S. C., & Craik, F. I. (2000). Encoding and retrieval of information. In: E. Tulving and F. I. M. Craik (Eds.), The Oxford handbook of memory (pp. 93-107). Oxford University Press.
Baddeley, A. (2000). The episodic buffer: a new component of working memory?. Trends in Cognitive Sciences. 4(11), 417-423. https://doi.org/10.1016/S1364-6613(00)01538-2
Buening, J., Brown, R.D. (2018). Visuospatial Cognition. In: Neuroscience of Mathematical Cognitive Development: From infancy through emerging adulthood.. Springer, Cham, 79–96. https://doi.org/10.1007/978-3-319-76409-2_5
Boiarskaia, E.A., Boscolo, M.S., Zhu, W., Mahar, M.T. (2011). Cross-validation of an equating method linking aerobic FITNESSGRAM® field tests. American Journal of Preventive Medicine, 41(4), S124-S130. doi: 10.1016/j.amepre.2011.07.009.
Buszard, T., Masters, R. S., & Farrow, D. (2017). The generalizability of working-memory capacity in the sport domain. Current Opinion in Psychology, 16, 54-57. https://doi.org/10.1016/j.copsyc.2017.04.018
Biese, K. M., Pietrosimone, L. E., Andrejchak, M., Lynall, R. C., Wikstrom, E. A., & Padua, D. A. (2019). Preliminary investigation on the effect of cognition on jump-landing performance using a clinically relevant setup. Measurement in Physical Education and Exercise Science, 23(1), 78-88. https://doi.org/10.1080/1091367X.2018.1518875
Boraczynski, M. T., Sozanski, H. A., & Boraczynski, T. W. (2019). Effects of a 12-month complex proprioceptive-coordinative training program on soccer performance in prepubertal boys aged 10–11 years. The Journal of Strength & Conditioning Research, 33(5), 1380-1393. doi: 10.1519/JSC.0000000000001878
Büchel, D., Gokeler, A., Heuvelmans, P., Baumeister, J. (2022). Increased Cognitive Demands Affect Agility Performance in Female Athletes - Implications for Testing and Training of Agility in Team Ball Sports. Perceptual and Motor Skills, 15, 315125221108698. doi: 10.1177/00315125221108698.
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126-131.
Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Academic Press.
Cronin, J.B., Templeton, R.L. (2008). Timing light height affects sprint times. The Journal of Strength & Conditioning Research, 22(1), 318-20. doi: 10.1519/JSC.0b013e31815fa3d3.
Clanton, T. O., Matheny, L. M., Jarvis, H. C., & Jeronimus, A. B. (2012). Return to play in athletes following ankle injuries. Sports Health, 4(6), 471-474. https://doi.org/10.1177/1941738112463347
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135-168. doi: 10.1146/annurev-psych-113011-143750
Dehn, M. J. (2011). Working memory and academic learning: Assessment and intervention. John Wiley & Sons.
Duncan, S., Oppici, L., Borg, C., Farrow, D., Polman, R., & Serpiello, F. R. (2018). Expertise-related differences in the performance of simple and complex tasks: an event-related potential evaluation of futsal players. Science and Medicine in Football, 2(2), 157-162. https://doi.org/10.1080/24733938.2017.1398408
Dugdale, J. H., Sanders, D., & Hunter, A. M. (2020). Reliability of change of direction and agility assessments in youth soccer players. Sports, 8(4), 51. https://doi.org/10.3390/sports8040051
De-Oliveira, L. A., Matos, M. V., Fernandes, I. G. S., Nascimento, D. A., & da Silva-Grigoletto, M. E. (2021). Test-Retest Reliability of a Visual-Cognitive Technology (BlazePod™) to Measure Response Time. Journal of Sports Science & Medicine, 20(1), 179-180. https://doi.org/10.52082/jssm.2021.179
Davis, P. A., Sörman, D., Carlberg, A., Rognsvåg, E., & Stenling, A. (2022). The psychophysiological influence of exertion and affect on sport-specific cognitive and physical performance. Journal of Science and Medicine in Sport, S1440-2440(22)00149-9. doi: 10.1016/j.jsams.2022.05.008.
Draheim, C., Pak, R., Draheim, A. A., & Engle, R. W. (2022). The role of attention control in complex real-world tasks. Psychonomic Bulletin & Review, 1-55.
Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267
Enoka, R.M,, Duchateau, J. (2008). Muscle fatigue: what, why and how it influences muscle function. The Journal of Physiology, 586(1), 11-23. doi: 10.1113/jphysiol.2007.139477.
Fox, A., Spittle, M., Otago, L., & Saunders, N. (2014). Offensive agility techniques performed during international netball competition. International Journal of Sports Science & Coaching, 9(3), 543-552. https://doi.org/10.1260/1747-9541.9.3.543
Furley, P., Memmert, D. (2010). Differences in spatial working memory as a function of team sports expertise: the Corsi Block-tapping task in sport psychological assessment. Perceptual and Motor Skills, 110(3), 801-8. doi: 10.2466/PMS.110.3.801-808.
Furley, P. A., & Memmert, D. (2010). The role of working memory in sport. International Review of Sport and Exercise Psychology, 3(2), 171-194. https://doi.org/10.1080/1750984X.2010.526238
Furley, P., & Wood, G. (2016). Working memory, attentional control, and expertise in sports: A review of current literature and directions for future research. Journal of Applied Research in Memory and Cognition, 5(4), 415-425. https://doi.org/10.1016/j.jarmac.2016.05.001
Fiorilli, G., Iuliano, E., Mitrotasios, M., Pistone, E. M., Aquino, G., Calcagno, G., & di Cagno, A. (2017). Are change of direction speed and reactive agility useful for determining the optimal field position for young soccer players?. Journal of Sports Science and Medicine, 16(2), 247-253.
Fuster, J., Caparrós, T., & Capdevila, L. (2021). Evaluation of cognitive load in team sports: literature review. PeerJ, 9, e12045. https://doi.org/10.7717/peerj.12045
Fischer, P. D., Hutchison, K. A., Becker, J. N., & Monfort, S. M. (2021). Evaluating the Spectrum of Cognitive-Motor Relationships During Dual-Task Jump Landing. Journal of Applied Biomechanics, 37(4), 388-395. DOI: 10.1123/jab.2020-0388
Farvardin, F., Almonroeder, T. G., Letafatkar, A., Thomas, A. C., & Ataabadi, P. A. (2021). The Effects of Increasing Cognitive Load on Support Limb Kicking Mechanics in Male Futsal Players. Journal of Motor Behavior, 54(4), 438-446. DOI: 10.1080/00222895.2021.2010639
Farrow, D., Pyne, D., & Gabbett, T. (2008). Skill and physiological demands of open and closed training drills in Australian football. International Journal of Sports Science & Coaching, 3(4), 489-499. DOI: 10.1260/174795408787186512
Glencross, D.J. (1966). The nature of the vertical jump test and the standing broad jump. Research Quarterly. American Association for Health, Physical Education and Recreation. 37(3), 353-9. https://doi.org/10.1080/10671188.1966.10614761
Grehaigne, J. F., Godbout, P., & Bouthier, D. (1997). Performance assessment in team sports. Journal of Teaching in Physical Education, 16(4), 500-516. DOI: https://doi.org/10.1123/jtpe.16.4.500
Gabbett, T., & Benton, D. (2009). Reactive agility of rugby league players. Journal of Science and Medicine in Sport, 12(1), 212-214. DOI: 10.1016/j.jsams.2007.08.011
Gabbett, T. J., Kelly, J. N., & Sheppard, J. M. (2008). Speed, change of direction speed, and reactive agility of rugby league players. The Journal of Strength & Conditioning Research, 22(1), 174-181. DOI: 10.1519/JSC.0b013e31815ef700
Green, B. S., Blake, C., & Caulfield, B. M. (2011). A valid field test protocol of linear speed and agility in rugby union. The Journal of Strength & Conditioning Research, 25(5), 1256-1262. doi: 10.1519/JSC.0b013e3181d8598b
Gilbert, S. J., & Burgess, P. W. (2008). Executive function. Current Biology, 18(3), R110-114. https://doi.org/10.1016/j.cub.2007.12.014
Green, B. S., Blake, C., & Caulfield, B. M. (2011). A valid field test protocol of linear speed and agility in rugby union. The Journal of Strength & Conditioning Research, 25(5), 1256-1262. https://doi.org/10.1519/JSC.0b013e3181d8598b
Giuriato, M., & Lovecchio, N. (2018). Cognitive Training in Soccer: Where Is the Key Point?. Open Access Library Journal, 5(2), 1-6. DOI:10.4236/oalib.1104333
Gabbett, T. J., Jenkins, D. G., & Abernethy, B. (2010). Physiological and skill demands of ‘on-side’and ‘off-side’games. The Journal of Strength & Conditioning Research, 24(11), 2979-2983. doi: 10.1519/JSC.0b013e3181e72731
Glavaš, D. (2020). Basic cognitive abilities relevant to male adolescents’ soccer performance. Perceptual and Motor skills, 127(6), 1079-1094. https://doi.org/10.1177/0031512520930158
Gokeler, A., Benjaminse, A., Della Villa, F., Tosarelli, F., Verhagen, E., & Baumeister, J. (2021). Anterior cruciate ligament injury mechanisms through a neurocognition lens: implications for injury screening. BMJ open sport & exercise medicine, 7(2), e001091. doi: http://dx.doi.org/10.1136/bmjsem-2021-001091
Houck, J. R., Duncan, A., & Kenneth, E. (2006). Comparison of frontal plane trunk kinematics and hip and knee moments during anticipated and unanticipated walking and side step cutting tasks. Gait & posture, 24(3), 314-322. https://doi.org/10.1016/j.gaitpost.2005.10.005
Horička, P., Hianik, J., & Šimonek, J. (2014). The relationship between speed factors and agility in sport games. Journal of Human Sport and Exercise, 9(1). 49-58. doi: https://doi.org/10.4100/jhse.2014.91.06.
Herman, D. C., & Barth, J. T. (2016). Drop-Jump Landing Varies With Baseline Neurocognition: Implications for Anterior Cruciate Ligament Injury Risk and Prevention. The American Journal of Sports Medicine, 44(9), 2347-2353. https://doi.org/10.1177/0363546516657338
Hoffman, J. R. (2020). Evaluation of a Reactive Agility Assessment Device in Youth Football Players. The Journal of Strength & Conditioning Research, 34(12), 3311-3315. https://doi.org/10.1519/jsc.0000000000003867
Henry, G., Dawson, B., Lay, B., Young, W. (2012). Effects of a feint on reactive agility performance. Journal of Sports Sciences, 30(8), 787-95. doi: 10.1080/02640414.2012.671527.
Hachana, Y., Chaabène, H., Nabli, M. A., Attia, A., Moualhi, J., Farhat, N., & Elloumi, M. (2013). Test-retest reliability, criterion-related validity, and minimal detectable change of the Illinois agility test in male team sport athletes. The Journal of Strength & Conditioning Research, 27(10), 2752-2759. doi: 10.1519/JSC.0b013e3182890ac3
Henry, G.J., Dawson, B., Lay, B.S., Young, W.B. (2013). Decision-making accuracy in reactive agility: quantifying the cost of poor decisions. The Journal of Strength & Conditioning Research, 27(11), 3190-6. doi: 10.1519/JSC.0b013e31828b8da4.
Innglis, P., & Bird, S.P. (2016). Reactive agility tests: review and practical applications. Journal of Australian Strength and Conditioning, 24(5), 62-69.
Jeong, S.K., Nam, H.S., Son, M.H., Son, E.J., Cho, K.H. (2005). Interactive effect of obesity indexes on cognition. Dementia and Geriatric Cognitive Disorders, 19(2-3), 91-6. doi: 10.1159/000082659.
Jeffreys, I. (2011). A Task-Based Approach to Developing Context-Specific Agility. Strength & Conditioning Journal, 33(4), 52-59. DOI: 10.1519/SSC.0b013e318222932a
Jacobson, J., & Matthaeus, L. (2014). Athletics and executive functioning: How athletic participation and sport type correlate with cognitive performance. Psychology of Sport and Exercise, 15(5), 521-527. https://doi.org/10.1016/j.psychsport.2014.05.005
Jin, P., Li, X., Ma, B., Guo, H., Zhang, Z., & Mao, L. (2020). Dynamic visual attention characteristics and their relationship to match performance in skilled basketball players. PeerJ, 8, e9803. doi: 10.7717/peerj.9803
Karvonen, M. , Kentala, E., & Mustala, O. (1957). The effects of training on heart rate: A longitudinal study. Annales Medicinae Experimentalis et Biologiae Fenniae, 35, 307-315.
Kessels, R. P., Van Zandvoort, M. J., Postma, A., Kappelle, L. J., & De Haan, E. H. (2000). The Corsi block-tapping task: standardization and normative data. Applied Neuropsychology, 7(4), 252-258. doi: 10.1207/S15324826AN0704_8.
Kaplan, T., Erkmen, N., & Taskin, H. (2009). The evaluation of the running speed and agility performance in professional and amateur soccer players. The Journal of Strength & Conditioning Research, 23(3), 774-778. doi: 10.1519/JSC.0b013e3181a079ae
Krishnan, A., Sharma, D., Bhatt, M., Dixit, A., & Pradeep, P. (2017). Comparison between Standing Broad Jump test and Wingate test for assessing lower limb anaerobic power in elite sportsmen. Medical Journal Armed Forces India, 73(2), 140-145. https://doi.org/10.1016/j.mjafi.2016.11.003
Kim, J., Gabriel, U., Gygax, P. (2019). Testing the effectiveness of the Internet-based instrument PsyToolkit: A comparison between web-based (PsyToolkit) and lab-based (E-Prime 3.0) measurements of response choice and response time in a complex psycholinguistic task. PLoS One, 14(9). doi: 10.1371/journal.pone.0221802.
Koch, P., Krenn, B. (2021). Executive functions in elite athletes – Comparing open-skill and closed-skill sports and considering the role of athletes' past involvement in both sport categories. Psychology of Sport and Exercise, 55 (2), 101925. DOI: 10.1016/j.psychsport.2021.101925
Kalén, A., Bisagno, E., Musculus, L., Raab, M., Pérez-Ferreirós, A., Williams, A. M., Araújo, D., Lindwall, M., & Ivarsson, A. (2021). The role of domain-specific and domain-general cognitive functions and skills in sports performance: A meta-analysis. Psychological Bulletin, 147(12), 1290–1308. https://doi.org/10.1037/bul0000355
Knöbel, S., & Lautenbach, F. (2023). An assist for cognitive diagnostics in soccer (Part II): Development and validation of a task to measure working memory in a soccer-specific setting. Frontiers in Psychology, 13, 1026017. https://doi.org/10.3389/fpsyg.2022.1026017
Léger, L.A., Lambert, J. (1982). A maximal multistage 20-m shuttle run test to predict VO2 max. European Journal of Applied Physiology and Occupational Physiology, 49(1). 1-12. doi: 10.1007/BF00428958.
Lockie, R. G., Jeffriess, M. D., McGann, T. S., Callaghan, S. J., & Schultz, A. B. (2014). Planned and reactive agility performance in semiprofessional and amateur basketball players. International Journal of Sports Physiology and Performance, 9(5), 766-771. DOI: 10.1123/ijspp.2013-0324
Linek P, Sikora D, Wolny T, Saulicz E. (2017). Reliability and number of trials of Y Balance Test in adolescent athletes. Musculoskeletal Science and Practice, 31, 72-75. doi: 10.1016/j.msksp.2017.03.011.
McAfoose, J., & Baune, B. T. (2009). Exploring visual–spatial working memory: A critical review of concepts and models. Neuropsychology review, 19(1), 130-142. https://doi.org/10.1007/s11065-008-9063-0
Miller, E. K., & Wallis, J. D. (2009). Executive function and higher-order cognition: definition and neural substrates. Encyclopedia of Neuroscience, 4(99-104). doi: 10.1016/B978-008045046-9.00418-6
Mahar, M. T., Guerieri, A. M., Hanna, M. S., Kemble, C. D. (2011). Estimation of aerobic fitness from 20-m multistage shuttle run test performance. American Journal of Preventive Medicine, 41(4S2), S117-S123. doi: 10.1016/j.amepre.2011.07.008.
Monaco, M., Costa, A., Caltagirone, C., Carlesimo, G.A. (2013). Forward and backward span for verbal and visuo-spatial data: standardization and normative data from an Italian adult population. Neurological Sciences, 34(5), 749-54. doi: 10.1007/s10072-012-1130-x
Manske, R., & Reiman, M. (2013). Functional performance testing for power and return to sports. Sports Health, 5(3), 244–250. https://doi.org/10.1177/1941738113479925
Meng, F. W., Yao, Z. F., Chang, E. C., & Chen, Y. L. (2019). Team sport expertise shows superior stimulus-driven visual attention and motor inhibition. PLoS One, 14(5), e0217056. https://doi.org/10.1371/journal.pone.0217056
Millikan, N., Grooms, D. R., Hoffman, B., & Simon, J. E. (2019). The development and reliability of 4 clinical neurocognitive single-leg hop tests: implications for return to activity decision-making. Journal of Sport Rehabilitation, 28(5), 536-544. doi: 10.1123/jsr.2018-0037.
Monfort, S. M., Pradarelli, J. J., Grooms, D. R., Hutchison, K. A., Onate, J. A., & Chaudhari, A. M. W. (2019). Visual-Spatial Memory Deficits Are Related to Increased Knee Valgus Angle During a Sport-Specific Sidestep Cut. The American Journal of Sports Medicine, 47(6), 1488-1495. https://doi.org/10.1177/0363546519834544
Mornieux, G., Gehring, D., & Gollhofer, A. (2021). Is there a sex difference in trunk neuromuscular control among recreational athletes during cutting maneuvers?. Journal of Sports Science & Medicine, 20(4), 743. doi: 10.52082/jssm.2021.743
Musculus, L., Lautenbach, F., Knöbel, S., Reinhard, M. L., Weigel, P., Gatzmaga, N., ... & Pelka, M. (2022). An assist for cognitive diagnostics in soccer: Two valid tasks measuring inhibition and cognitive flexibility in a soccer-specific setting with a soccer-specific motor response. Frontiers in Psychology, 13, 867849. doi: 10.3389/fpsyg.2022.867849.
Negra, Y., Chaabene, H., Amara, S., Jaric, S., Hammami, M., & Hachana, Y. (2017). Evaluation of the Illinois change of direction test in youth elite soccer players of different age. Journal of Human Kinetics, 58(1), 215-224. DOI: https://doi.org/10.1515/hukin-2017-0079
Nimphius, S., Callaghan, S. J., Bezodis, N. E., & Lockie, R. G. (2018). Change of direction and agility tests: Challenging our current measures of performance. Strength & Conditioning Journal, 40(1), 26-38. doi: 10.1519/SSC.0000000000000309
Oliver, J. L., & Meyers, R. W. (2009). Reliability and generality of measures of acceleration, planned agility, and reactive agility. International Journal of Sports Physiology and Performance, 4(3), 345-354. https://doi.org/10.1123/ijspp.4.3.345
Pauole, K., Madole, K., Garhammer, J., Lacourse, M., & Rozenek, R. (2000). Reliability and validity of the T-test as a measure of agility, leg power, and leg speed in college-aged men and women. The Journal of Strength & Conditioning Research, 14(4), 443-450. DOI: 10.1519/00124278-200011000-00012
Pagulayan, F. K., Busch, R. M., Medina, K. L., Bartok, J. A., & Krikorian, R. (2006). Developmental normative data for the Corsi Block-tapping task. Journal of clinical and experimental neuropsychology, 28(6), 1043-1052. https://doi.org/10.1080/13803390500350977
Paul, D. J., Gabbett, T. J., & Nassis, G. P. (2016). Agility in Team Sports: Testing, Training and Factors Affecting Performance. Sports Medicine, 46(3), 421-442. https://doi.org/10.1007/s40279-015-0428-2
Powden, C. J., Dodds, T. K., Gabriel, E. H. (2019). The reliability of the Star excursion balance test and lower quarter Y-balance test in healthy adults: a systematic review. International Journal of Sports Physical Therapy, 14(5), 683-694.
Porter, K. L., Quintana, C., & Hoch, M. (2021). The Relationship Between Neurocognitive Function and Biomechanics: A Critically Appraised Topic. Journal of Sport Rehabilitation, 30(2), 327-332. https://doi.org/10.1123/jsr.2020-0103
Porter, K. H., Morelli, N., Heebner, N.R., Wilson, J., Parks, A.M., Han, D.Y., Hoch, M.C. (2023). Computerized Cognitive Function Does Not Correlate With Choice Reaction Time During a Hopping Task. Journal of Sport Rehabilitation, 1(aop), 1-5. doi: 10.1123/jsr.2022-0345.
Ramsbottom, R., Brewer, J., Williams, C. (1988). A progressive shuttle run test to estimate maximal oxygen uptake. British Journal of Sports Medicine, 22(4). 141-144. doi: 10.1136/bjsm.22.4.141.
Rizzo, M., & Vecera, S. P. (2002). Psychoanatomical substrates of Balint's syndrome. Journal of Neurology, Neurosurgery & Psychiatry, 72(2), 162-178.
Renshaw, I., Davids, K., Araújo, D., Lucas, A., Roberts, W. M., Newcombe, D. J., & Franks, B. (2019). Evaluating Weankesses of “Perceptual-Cognitive Training” and“Brain Training” Methods in Sport: An Ecological Dynamics Critique. Frontiers in Psychology, 9, 2468. https://doi.org/10.3389/fpsyg.2018.02468
Ridderinkhof, K.R., Wylie, S.A., van den Wildenberg, W. PM., Bashore, TR. Jr., van der Molen, M.W. (2021). The arrow of time: Advancing insights into action control from the arrow version of the Eriksen flanker task. Attention, Perception, & Psychophysics, 83(2), 700-721. doi: 10.3758/s13414-020-02167-z.
Ren, Y., Wang, C., Zhang, L., & Lu, A. (2022). The effects of visual cognitive tasks on landing stability and lower extremity injury risk in high-level soccer players. Gait & Posture, 92, 230-235. https://doi.org/10.1016/j.gaitpost.2021.11.031
Singer, R. N. (2000). Performance and human factors: Considerations about cognition and attention for self-paced and externally-paced events. Ergonomics, 43(10), 1661-1680. DOI: 10.1080/001401300750004078
Sheppard J.M., Young W.B. (2006). Agility literature review: classifications, training and testing. Journal of Sports Sciences, 24(9), 919-932. doi: 10.1080/02640410500457109.
Sheppard, J. M., Young, W. B., Doyle, T. L., Sheppard, T. A., & Newton, R. U. (2006). An evaluation of a new test of reactive agility and its relationship to sprint speed and change of direction speed. Journal of Science and Medicine in Sport, 9(4), 342-349. https://doi.org/10.1016/j.jsams.2006.05.019
Scanlan, A., Humphries, B., Tucker, P. S., & Dalbo, V. (2013). The influence of physical and cognitive factors on reactive agility performance in men basketball players. Journal of sports sciences, 32(4), 367-374. https://doi.org/10.1080/02640414.2013.825730
Shaffer, S. W., Teyhen, D. S., Lorenson, C. L., Warren, R. L., Koreerat, C. M., Straseske, C. A., Childs, J. D. (2013). Y-balance test: a reliability study involving multiple raters. Military Medicine, 178(11). 1264-1270. doi: 10.7205/MILMED-D-13-00222.
Seifert, L., & Davids, K. (2017). Ecological dynamics: a theoretical framework for understanding sport performance, physical education and physical activity. In First complex systems digital campus world e-conference 2015 (pp. 29-40), Springer, Cham. https://doi.org/10.1007/978-3-319-45901-1_3
Simon, J. E., Millikan, N., Yom, J., & Grooms, D. R. (2020). Neurocognitive challenged hops reduced functional performance relative to traditional hop testing. Physical Therapy in Sport, 41, 97-102. DOI: 10.1016/j.ptsp.2019.12.002
Thomas, S., Reading, J., & Shephard, R. J. (1992). Revision of the physical activity readiness questionnaire (PAR-Q). Canadian Journal of Sport Sciences, 17(4), 338-345.
Trecroci, A., Bongiovanni, T., Cavaggioni, L., Pasta, G., Formenti, D., & Alberti, G. (2020). Agreement between dribble and change of direction deficits to assess directional asymmetry in young elite football players. Symmetry, 12(5), 787. https://doi.org/10.3390/sym12050787
Tassignon, B., Verschueren, J., De Wachter, J., Maricot, A., De Pauw, K., Verhagen, E., & Meeusen, R. (2020). Test-retest, intra- and inter-rater reliability of the reactive balance test in healthy recreational athletes. Physical Therapy in Sport, 46, 47-53. https://doi.org/10.1016/j.ptsp.2020.08.010
Verburgh, L., Scherder, E. J., van Lange, P. A., & Oosterlaan, J. (2014). Executive functioning in highly talented soccer players. PloS One, 9(3), e91254. https://doi.org/10.1371/journal.pone.0091254
Verschueren, J., Tassignon, B., Pluym, B., Van Cutsem, J., Verhagen, E., & Meeusen, R., (2019). Bringing context to balance: development of a reactive balance test within the injury prevention and return to sport domain. Archives of Physiotherapy, 9(1), 1-8. DOI: https://doi.org/10.1186/s40945-019-0057-4
Vaughan, R.S., Laborde, S. (2021). Attention, working-memory control, working-memory capacity, and sport performance: The moderating role of athletic expertise. European Journal of Sport Science, 21(2), 240-249. doi: 10.1080/17461391.2020.1739143.
Warburton, D. E., Nicol, C. W., & Bredin, S. S. (2006). Prescribing exercise as preventive therapy. Canadian Medical Association Journal, 174(7), 961-974. DOI: https://doi.org/10.1503/cmaj.1040750
Wang, C.H., Yang, C.T., Moreau, D., Muggleton, N.G., (2017). Motor expertise modulates neural oscillations and temporal dynamics of cognitive control. NeuroImage, 158, 260-270. doi: 10.1016/j.neuroimage.2017.07.009.
Wylie, S.A., Bashore, T.R., Van Wouwe, N.C., Mason, E.J., John, K.D., Neimat, J.S., Ally, B.A. (2018). Exposing an "Intangible" Cognitive Skill among Collegiate Football Players: Enhanced Interference Control. Frontiers in Psychology, 9, 9:49. doi: 10.3389/fpsyg.2018.00049.
Wilke, J., Groneberg, D., Banzer, W., & Giesche, F. (2020). Perceptual–Cognitive Function and Unplanned Athletic Movement Task Performance: A Systematic Review. International Journal of Environmental Research and Public Health, 17(20), 7481. DOI: 10.3390/ijerph17207481
Wilke, J., Vogel, O., & Ungricht, S. (2020a). Can we measure perceptual-cognitive function during athletic movement? A framework for and reliability of a sports-related testing battery. Physical Therapy in Sport, 43, 120-126. https://doi.org/10.1016/j.ptsp.2020.02.016
Wilke, J., Vogel, O., & Ungricht, S. (2020b). Traditional Neuropsychological Testing Does Not Predict Motor-Cognitive Test Performance. International Journal of Environmental Research and Public Health, 17(20). https://doi.org/10.3390/ijerph17207393
Wang, C. H., Liang, W. K., & Moreau, D. (2020). Differential modulation of brain signal variability during cognitive control in athletes with different domains of expertise. Neuroscience, 425, 267-279. https://doi.org/10.1016/j.neuroscience.2019.11.003
Walker, J. M., Brunst, C. L., Chaput, M., Wohl, T. R., & Grooms, D. R. (2021). Integrating neurocognitive challenges into injury prevention training: A clinical commentary. Physical Therapy in Sport, 51, 8-16. DOI: 10.1016/j.ptsp.2021.05.005Wilke, J., & Groneberg, D. A. (2021). Neurocognitive function and musculoskeletal injury risk in sports: A systematic review. Journal of Science and Medicine in Sport, 25(1), 41-45. https://doi.org/10.1016/j.jsams.2021.07.002
Young, W. B., Dawson, B., & Henry, G. J. (2015). Agility and change-of-direction speed are independent skills: Implications for training for agility in invasion sports. International Journal of Sports Science & Coaching, 10(1), 159-169. https://doi.org/10.1260/1747-9541.10.1.159
Young, W. B., & Willey, B. (2010). Analysis of a reactive agility field test. Journal of Science and Medicine in Sport, 13(3), 376-378. https://doi.org/10.1016/j.jsams.2009.05.006
Young, W., Rayner, R., & Talpey, S. (2021). It’s time to change direction on agility research: A call to action. Sports Medicine-Open, 7, 1-5. DOI: 10.1186/s40798-021-00304-y
Yongtawee, A., Park, J., Kim, Y., & Woo, M. (2022). Athletes have different dominant cognitive functions depending on type of sport. International Journal of Sport and Exercise Psychology, 20(1), 1-15. https://doi.org/10.1080/1612197X.2021.1956570
Zemková, E., & Hamar, D. (2014). Agility performance in athletes of different sport specializations. Acta Gymnica, 44(3), 133-140. doi: 10.5507/ag.2014.013.