| 研究生: |
林兪嫺 Lin, Yu-Hsien |
|---|---|
| 論文名稱: |
緩釋型類芬頓材應用於處理苯及MTBE之研究 Permeable reactive material induced Fenton-like reactions for benzene and MTBE decomposition |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 125 |
| 中文關鍵詞: | Fenton-like反應 、氫氧自由基 、透水性反應牆 、苯 、MTBE (甲基第三丁基醚) |
| 外文關鍵詞: | Fenton-like reactions, OH radical, permeable reactive barriers (PRBs), benzene, MTBE |
| 相關次數: | 點閱:111 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石油碳氫化合物中之苯、甲苯、乙苯、二甲苯(Benzene、Toluene、Ethylbenzene、Xylenes,簡稱BTEX)及MTBE(甲基第三丁基醚,methyl tertiary-butyl ether)等化學物質,具有致癌性,當管線或儲槽洩漏經地下水的流動及傳導,進而擴展影響周遭土壤及地下水水質,必須進行整治。近年來現地化學氧化法常用於處理受石油碳氫化合物污染之地下水,而其中Fenton-like試劑以鐵化合物取代溶解性鐵來催化過氧化氫產生強氧化力之氫氧自由基( •OH ),對於難分解有機物處理效率高,若結合透水性反應牆法,應為極具潛力之整治方法。本研究製備緩釋型之Fenton-like試劑並結合透水性反應牆法,以外加H2O2氧化劑與透水性反應材產生異相催化反應,並利用對氯苯甲酸(pCBA)作為探針,探討系統釋出氫氧自由基情形,期能建立土壤地下水有機污染物降解之整治技術。
研究結果顯示,自行製備之複合型鐵氧化物有多種鐵氧化物具有催化Fenton-like反應進行之潛力。由批次試驗,pCBA於Fenton-like系統的降解效果明顯,且pCBA受複合型鐵氧化物吸附及pH值影響甚小,而H2O2單獨對其氧化率低於4.2%。粒狀管柱及塊狀管柱試驗中,複合型鐵氧化物之氫氧自由基釋出量隨H2O2濃度提升及反應時間而增加,且延長管柱操作時間,仍持續釋放維持高氧化力,可持續約17~18小時。粒狀管柱之反應速率係數(kobs)隨著操作時間增長呈指數型下降,而塊狀管柱之kobs隨操作時間增長呈線性遞減。
降解污染物之管柱試驗可知,在污染物進流速度固定下,管柱長度越長(模擬反應牆之厚度愈厚),對於污染物的降解效果愈好。在800 mg/L H2O2加藥量下,苯之最高去除率於粒狀管柱約為96%,於塊狀管柱約為73% ; MTBE之最高去除率於粒狀管柱約為67%,於塊狀管柱約為53%。長期操作對不同型式之管柱對污染物降解試驗中,高氧化降解率皆可持續20小時以上,顯示複合型鐵氧化物具緩釋之效果,粒狀管柱系統與污染物反應速率快,具較高污染物去除率,而經由水泥包覆之塊材因有較小之反應面積,使緩釋能力更明顯,其效率衰減程度較為緩慢,於操作時間內第50小時,其對污染物之去除率高於粒狀管柱。
Fenton-like reactions is a soil and groundwater chemical oxidation remediation technology achieved by using iron oxides to catalyze H2O2 and produce free hydroxyl radicals to destroy the organic pollutants in the soil or groundwater. In this study, the efficiency of Fenton-like material synthesis from multi-iron oxides for permeable reactive barriers (PRBs) was evaluated. During Fenton-like reaction, permeable reactive material will catalyze H2O2 decomposition, forming hydroxyl free radicals (•OH) with high oxidation capacity to remove benzene and MTBE from solution. The analysis of •OH generated in Fenton-like reactions through taking pCBA (para-chlorobenzoic acid) as the probe compound. Monitoring the change in concentration of the •OH -probe compound provides an indirect measurement of the •OH concentration. Continuous column experiments were carried out under dynamic flow conditions, showed from grinding filling column and block filling column tests. The reduction of pCBA follows a pseudo-first-order kinetics while the performance of •OH releasing was excellent and stable until 25 hours of period. When initial H2O2 concentration is 800 mg/L, in the test with grinding filling column, the maximum removal rates for benzene and MTBE were 96% and 67%, while in the test with block filling column, those were 73% and 53%, respectively.
Ai, Z., Lu, L., Li, J., Zhang, L., Qiu, J., & Wu, M. (2007). Fe@Fe2O3 Core−Shell Nanowires as Iron Reagent. 1. Efficient Degradation of Rhodamine B by a Novel Sono-Fenton Process. The Journal of Physical Chemistry C, 111(11), 4087–4093.
Amarante, D. (2000). APPLYING IN SITU CHEMICAL OXIDATION (No. Vol 32 No 2, p 40-42).
ATSDR - ToxFAQsTM: Benzene. (2007).
Blackburn, A. C., Doe, W. F., & Buffinton, G. D. (1998). Salicylate Hydroxylation as an Indicator of Hydroxyl Radical Generation in Dextran Sulfate-Induced Colitis. Free Radical Biology and Medicine, 25(3), 305–313.
Brar, S. K., Verma, M., Surampalli, R. Y., Misra, K., Tyagi, R. D., Meunier, N., & Blais, J. F. (2006). Bioremediation of Hazardous Wastes—A Review. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(2), 59–72.
Brown, R. A., Robinson, D., Skladany, G., & Loeper, J. (2003). Response to naturally occurring organic material permanganate - GetInfo (International conference; 8th, Contaminated soil).
Burbano, A. A., Dionysiou, D. D., Suidan, M. T., & Richardson, T. L. (2005). Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Water Research, 39(1), 107–118.
Chen, P., & Watts, R. J. (2000). Determination of Rates of Hydroxyl Radical Generation in Mineral-Catalyzed Fenton-Like Oxidation.
Chiou, C. S., Chen, Y. H., Shie, J. L., Liu, C. C., & Chang, C. T. (2006). Photochemical Oxidation of Polyethylene Glycol in Aqueous Solution by UV/H2O2 with Steel Waste.
Choi, J.-H., Kim, Y.-H., & Choi, S. J. (2007). Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers: laboratory studies. Chemosphere, 67(8), 1551–1557.
Chou, S., & Huang, C. (1999). Application of a supported iron oxyhydroxide catalyst in oxidation of benzoic acid by hydrogen peroxide. Chemosphere, 38(12), 2719–2731.
Cullity, B. D., & Stock, S. R. (2001). Elements of X-Ray Diffraction (3rd Edition) .
Elovitz, M. S., & Gunten, U. von. (1999). Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. Ozone: Science & Engineering, 21(3), 239–260.
Fenton, H. J. H. (1894). LXXIII.—Oxidation of tartaric acid in presence of iron. Journal of the Chemical Society, Transactions, 65(0), 899–910.
Ferguson, S. H., Woinarski, A. Z., Snape, I., Morris, C. E., & Revill, A. T. (2004). A field trial of in situ chemical oxidation to remediate long-term diesel contaminated Antarctic soil. Cold Regions Science and Technology, 40(1–2), 47–60.
Goulden, P. D., & Anthony, D. H. J. (1978). Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry, 50(7), 953–958.
Hakkola, M., & Saarinen, L. (1996). Exposure of tanker drivers to gasoline and some of its components. The Annals of Occupational Hygiene, 40(1), 1–10.
Halliwell, B., Gutteridge, J. M. C., & Aruoma, O. I. (1987). The deoxyribose method: A simple “test-tube” assay for determination of rate constants for reactions of hydroxyl radicals. Analytical Biochemistry, 165(1), 215–219.
Happel, A.M., E.H. Beckenbach, & R.U. Halden. (1998). An Evaluation of MTBE Impacts to California Groundwater Resources.Livermore National Laboratory UCRL-AR-130897.
Huang, K.-C., Couttenye, R. A., & Hoag, G. E. (2002). Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere, 49(4), 413–420.
Huling, S. G., & Hwang, S. (2010). Iron amendment and Fenton oxidation of MTBE-spent granular activated carbon. Water Research, 44(8), 2663–2671.
Hung, H.-W., & Lin, T.-F. (2006). Adsorption of MTBE from contaminated water by carbonaceous resins and mordenite zeolite. Journal of Hazardous Materials, 135(1–3), 210–217.
Isherwood, W. F., Ziagos, J., Rice, D. J., Krauter, P., & Nichols, E. (1992). Enhancing aquifer cleanup with reinjection. Lawrence Livermore National Lab., CA (United States). Funding organisation: USDOE, Washington, DC (United States).
Kakarla, P. K. C., & Watts, R. J. (1997). DEPTH OF FENTON-LIKE OXIDATION IN REMEDIATION OF SURFACE SOIL. Journal of Environmental Engineering, 123(1).
Kavitha, V., & Palanivelu, K. (2003). Degradation of 2-chlorophenol by Fenton and photo-Fenton processes--a comparative study.Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 1215–1231.
Kavitha, V., & Palanivelu, K. (2004). The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere, 55(9), 1235–1243.
Kirtland, B. C., & Aelion, C. M. (2000). Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation. Journal of Contaminant Hydrology, 41(3–4), 367–383.
Klaus Keil, R. F. (2009). Celebrating 40 Years of Energy Dispersive X-Ray Spectrometry in Electron Probe Microanalysis: A Historic and Nostalgic Look Back into the Beginnings. Microscopy and Microanalysis : The Official Journal of Microscopy Society of America, Microbeam Analysis Society, Microscopical Society of Canada, 15(6), 476–83.
Kosaka, K., Yamada, H., Matsui, S., Echigo, S., & Shishida, K. (1998). Comparison among the Methods for Hydrogen Peroxide Measurements To Evaluate Advanced Oxidation Processes: Application of a Spectrophotometric Method Using Copper(II) Ion and 2,9-Dimethyl-1,10-phenanthroline. Environmental Science & Technology, 32(23), 3821–3824.
Kwon, B. G., Lee, D. S., Kang, N., & Yoon, J. (1999). Characteristics of p-chlorophenol oxidation by Fenton’s reagent. Water Research, 33(9), 2110–2118.
Lee, J.-M., Kim, J.-H., Chang, Y.-Y., & Chang, Y.-S. (2009). Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins. Journal of Hazardous Materials, 163(1), 222–230.
Fang Guang-rong, Liu Li-ming, Li Ling, Liu Li-hong and Song Gong-wu(2003).Determination of Hydroxyl Radicals by Flow Injection Fluorometry., Journal of Analytical Science, 20(1), 63-66.
Li, X. D., & Schwartz, F. W. (2004). DNAPL remediation with in situ chemical oxidation using potassium permanganate: II. Increasing removal efficiency by dissolving Mn oxide precipitates. Journal of Contaminant Hydrology, 68(3–4), 269–287.
Lucas, M. S., & Peres, J. A. (2006). Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation. Dyes and Pigments, 71(3), 236–244.
Matta, R., Hanna, K., Kone, T., & Chiron, S. (2008). Oxidation of 2,4,6-trinitrotoluene in the presence of different iron-bearing minerals at neutral pH. Chemical Engineering Journal, 144(3), 453–458.
Mehlman, M. A. (2002). Carcinogenicity of methyl-tertiary butyl ether in gasoline.Annals of the New York Academy of Sciences, 149–159.
Moraci, N., & Calabrò, P. S. (2010). Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers. Journal of Environmental Management, 91(11), 2336–2341.
Morrison, S. J., Metzler, D. R., & Dwyer, B. P. (2002). Removal of As, Mn, Mo, Se, U, V and Zn from groundwater by zero-valent iron in a passive treatment cell: reaction progress modeling.Journal of Contaminant Hydrology,(1-2), 99–116.
Pignatello, J. J. (1992). Dark and photoassisted iron(3+)-catalyzed degradation of chlorophenoxy herbicides by hydrogen peroxide. Environmental Science & Technology, 26(5), 944–951.
Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84.
Quan, H. N., Teel, A. L., & Watts, R. J. (2003). Effect of contaminant hydrophobicity on hydrogen peroxide dosage requirements in the Fenton-like treatment of soils. Journal of Hazardous Materials, 102(2–3), 277–289.
Rivas, F. J., Beltrán, F. J., Frades, J., & Buxeda, P. (2001). Oxidation of p-hydroxybenzoic acid by Fenton’s reagent.Water Research, (2), 387–396.
Schäfer, D., Köber, R., & Dahmke, A. (2003). Competing TCE and cis-DCE degradation kinetics by zero-valent iron-experimental results and numerical simulation. Journal of Contaminant Hydrology, 65(3-4), 183–202.
Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T., & Stickney, B. (1998). Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media. Journal of Contaminant Hydrology, 29(3), 205–224.
Seagren, E. A., & Becker, J. G. (2002). Review of Natural Attenuation of BTEX and MTBE in Groundwater. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 6(3), 156–172.
Siegrist, L. R., Crimi, M., & Simpkin, T. (2008). In Situ Chemical Oxidation for Remediation of Contaminated Groundwater:Summary Proceedings of an ISCO Technology Practices Workshop (No. Workshop Report, ESTCP Project ER – 0623). Environmental Security Technology Certification Program.
Siegrist, R. L., Crimi, M., & Simpkin, T. J. (Eds.). (2011). In Situ Chemical Oxidation for Groundwater Remediation (2011 edition). New York, NY: Springer.
Smirnoff, N., & Cumbes, Q. J. (1989). Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry, 28(4), 1057–1060.
Sun, J.-H., Sun, S.-P., Sun, J.-Y., Sun, R.-X., Qiao, L.-P., Guo, H.-Q., & Fan, M.-H. (2007). Degradation of azo dye Acid black 1 using low concentration iron of Fenton process facilitated by ultrasonic irradiation. Ultrasonics Sonochemistry, 14(6), 761–766.
Tai, C., Peng, J.-F., Liu, J.-F., Jiang, G.-B., & Zou, H. (2004). Determination of hydroxyl radicals in advanced oxidation processes with dimethyl sulfoxide trapping and liquid chromatography. Analytica Chimica Acta, 527(1), 73–80.
Tang, W. Z., & Tassos, S. (1997). Oxidation kinetics and mechanisms of trihalomethanes by Fenton’s reagent. Water Research, 31(5), 1117–1125.
Thiruvenkatachari, R., Ouk Kwon, T., & Shik Moon, I. (2006). Degradation of phthalic acids and benzoic acid from terephthalic acid wastewater by advanced oxidation processes. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 41(8), 1685–1697.
Tsai, T. T., & Kao, C. M. (2009). Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag. Journal of Hazardous Materials, 170(1), 466–472.
USEPA (1998). Permeable Reactive Barrier Technologies for Contaminant Remediation._
USEPA (2014). In Situ Chemical Oxidation [Overviews & Factsheets].
Ventura, A., Jacquet, G., Bermond, A., & Camel, V. (2002). Electrochemical generation of the Fenton’s reagent: application to atrazine degradation. Water Research, 36(14), 3517–3522.
Watts, R. J., Haller, D. R., Jones, A. P., & Teel, A. L. (2000). A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. Journal of Hazardous Materials, 76(1), 73–89.
Watts, R. J., Haller, D. R., Jones, A. P., & Teel, A. L. (2000). A foundation for the risk-based treatment of gasoline-contaminated soils using modified Fenton’s reactions. Journal of Hazardous Materials, 76(1), 73–89.
Yang, J., Cao, L., Guo, R., & Jia, J. (2010). Permeable reactive barrier of surface hydrophobic granular activated carbon coupled with elemental iron for the removal of 2,4-dichlorophenol in water. Journal of Hazardous Materials, 184(1-3), 782–787.
Yaping, Z., Wenli, Y., Dapu, W., Xiaofeng, L., & Tianxi, H. (2003). Chemiluminescence determination of free radical scavenging abilities of “tea pigments” and comparison with “tea polyphenols.” Food Chemistry, 80(1), 115–118.
Zhang, A., Wang, N., Zhou, J., Jiang, P., & Liu, G. (2012). Heterogeneous Fenton-like catalytic removal of p-nitrophenol in water using acid-activated fly ash. Journal of Hazardous Materials, 201–202, 68–73.
加油站土壤及地下水污染整治工程實例探討中興工程季刊,第106期,PP. 45-51,2010。
林金明,活性氧的化學發光測定法,環境科學學報,第二十三卷,第二期,2003。
梁愛惠、蔣治良、周蘇梅、周玉嬋、梁月園、陳麗玉,羅丹明6G締合微粒光度法檢測羥自由基及其在離體篩選抗氧化劑中的應用,光譜學與光譜分析,第二十六卷,第十一期,2006。
梁振儒, 淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法,台灣土壤及地下水環境保護協會簡,第二十三期,第13-20頁,2007。
王淑娟. (2006). 液相光催化反應之氫氧自由基生成量測-以甲醇為自由基捕捉劑.
行政院勞工委員會, MTBE 物質安全資料表。
谷學新、邰超、鄒洪、 郭啟華, 一個新的測定Fenton反應產生的·OH及清除的螢光方法 ,分析科學學報,第十八卷,第六期,2015。
財團法人台灣營建研究院,多元性營建資源再利用於透水性組合設計之研究,2003。
陳韋舜,Fenton-like反應中含氯乙烯類污染物與氫氧自由基反應係數之探討,國立屏東科技大學環境工程與科學系碩士班,碩士論文,2003。
高志明、 葉琮裕,以釋氧化劑整治牆處理受油污染之地下水,永續發展室,2008。