| 研究生: |
丁冠中 Ding, Guan-Jhong |
|---|---|
| 論文名稱: |
水分散性聚氨酯/聚麩胺酸/三鈣磷酸鹽複合支架之製備與特性分析 Preparation and characterization of waterbased poly(urethane) / poly(γ-glutamate) / tricalcium phosphate composite scaffolds |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 支架 、水分散性聚氨酯 、三鈣磷酸鹽 、聚麩胺酸 |
| 外文關鍵詞: | scaffolds, water-based polyurethane, tricalcium phosphate, poly(γ-glutamate) |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗主要目的為研製出新型具組織可吸收性的骨替代材料,以水分散性聚氨酯為基材,並摻混β型三鈣磷酸鹽與聚麩胺酸製備成孔洞複合支架。
實驗結果顯示經聚麩胺酸改質後的聚氨酯具有較小的接觸角及較高的吸水量,體外血小板貼附實驗結果得知,將聚麩胺酸摻混至聚氨酯中,會降低血小板在聚氨基甲酸酯表面上的貼附數目及活化程度。實驗結果亦指出以NCO/OH=1.8及DMPA=6wt%之比例所合成出的水分散性聚氨酯具有較大的拉伸強度,以及較適當的粒徑大小、吸水率與降解率。
本實驗利用掃描式電子顯微鏡觀察、X光繞射分析、傅利葉紅外線光譜儀、接觸角測試、孔隙度分析、吸水率測試、壓縮強度測試、降解率測試來觀察複合支架的表面型態與整體性質。結果顯示複合支架具有相互連通之孔洞,聚麩胺酸添加量提高會使得複合支架的壓縮強度降低,但親水性、吸水率、降解率、孔隙度與孔徑大小皆隨著聚麩胺酸添加量的提高而增加。並利用X光繞射分析與傅利葉紅外線光譜儀來判定三鈣磷酸鹽的晶相與複合支架的組成。
Novel porous composite scaffolds for bone tissue engineering were prepared from water-based polyurethane (WPU), tricalcium phosphate (TCP) and poly(γ-glutamate) (γ-PGA).
γ-PGA modified commercially available pellethane exhibit a smaller contact angle, and higher water absorption value than the pellethane without γ-PGA. In vitro platelet adhesion studies indicated that the addition of γ-PGA into pellethane leads to a reduction in platelet adhesion and activation. Results indicated that NCO/OH=1.8 and DMPA=6wt% of water-based polyurethane(WPU) had superior tensile strength, adequate particle size, swelling ratio, degradation ratio.
The morphology and properties of the scaffolds were characterized by scanning electron microscope, X-ray diffraction, infrared absorption spectra, static contact angle analysis, porosity analysis, swelling ratio, compressive strength testing, and in vitro degradation measurement. The results indicated that the porous composite scaffolds had an interconnected porous structure. The compressive strength of the porous composite scaffolds showed lower enhancement with increasing γ-PGA content. The hydrophilic, swelling ratio, degradation raio, porosity and pore size of the porous composite scaffolds showed higher value with increasing γ-PGA content. X-ray diffraction and Fourier transform infrared spectroscopy were used to determine the crystal structure and chemical composition of scaffolds.
1. Oikarinen J. and Korhonen L.K., Basic Science and Pathology - Bone Inductive Capacity of Various Bone Transplanting Materials Used for Treatment of Experimental Bone Defects. Clinical Orthopaedics and Related Research, 1979(140): p. 208-215.
2. Boyne P.J., Implants and Transplants - Review of Recent Research in This Area of Oral Surgery. Journal of the American Dental Association, 1973. 87(5): p. 1074-1080.
3. Aldridge J. and Berlinger N.T., Use of Allogenic Demineralized Bone-Matrix in Mandibular Reconstruction. Otolaryngology-Head and Neck Surgery, 1984: p. 36-37.
4. Rabkin E. and Schoen F.J., Cardiovascular tissue engineering. Cardiovascular Pathology, 2002. 11(6): p. 305-317.
5. Ko T.M., Lin J.C., and Cooper S.L., Surface Characterization and Platelet-Adhesion Studies of Plasma-Carboxylated Polyethylene. Journal of Colloid and Interface Science, 1993. 156(1): p. 207-217.
6. Ko T.M., Lin J.C., and Cooper S.L., Surface Characterization and Platelet-Adhesion Studies of Plasma-Sulfonated Polyethylene. Biomaterials, 1993. 14(9): p. 657-664.
7. Hutmacher D.W., Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2000. 21(24): p. 2529-2543.
8. Hong J.H., Jeon H.J., Yoo J.H., Yu W.R., and Youk J.H., Synthesis and characterization of biodegradable poly(epsilon-caprolactone-co-beta-butyrolactone)-based polyurethane. Polymer Degradation and Stability, 2007. 92(7): p. 1186-1192.
9. Guelcher S.A., Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Engineering Part B-Reviews, 2008. 14(1): p. 3-17.
10. Chen D.R., Chen H.L., Bei J.Z., and Wang S.G., Morphology and biodegradation of microspheres of polyester-polyether block copolymer based on polycaprolactone/polylactide/poly(ethylene oxide). Polymer International, 2000. 49(3): p. 269-276.
11. Tang Y.W., Labow R.S., Revenko I., and Santerre J.P., Influence of surface morphology and chemistry on the enzyme catalyzed biodegradation of polycarbonate-urethanes. Journal of Biomaterials Science-Polymer Edition, 2002. 13(4): p. 463-483.
12. Cunningham B.W., Hu N., Zorn C.M., and McAfee P.C., Bioactive titanium calcium phosphate coating for disc arthroplasty: analysis of 58 vertebral end plates after 6-to 12-month implantation. Spine Journal, 2009. 9(10): p. 836-845.
13. Li B., Chen X.N., Guo B., Wang X.L., Fan H.S., and Zhang X.D., Fabrication and cellular biocompatibility of porous carbonated biphasic calcium phosphate ceramics with a nanostructure. Acta Biomaterialia, 2009. 5(1): p. 134-143.
14. Lin W.C., Yu D.G., and Yang M.C., Blood compatibility of novel poly(gamma-glutamic acid)/polyvinyl alcohol hydrogels. Colloids and Surfaces B-Biointerfaces, 2006. 47(1): p. 43-49.
15. Riggs B.L., 骨質疏鬆症:病因、診斷、治療. 合記圖書出版社, 1997: p. 1-5.
16. SL T., Orthopaedics Principles and Their Applications. J.B. Lippincott Company, 1984. 1: p. 31-100.
17. Huether M., Understanding Pathophysiology. Second edition, 2000.
18. Bauer M., Bone graft materials. An overview of the basic science. Clin Orthop, 2000: p. 10-27.
19. Gisep A., Research on ceramic bone substitutes: current status. Injury-International Journal of the Care of the Injured, 2002. 33: p. 88-92.
20. Ravaglioli K., Bioceramics Materials. Properties, Applications. Chapman and Hall, 1992: p. 1-5.
21. Albee M., Studies in bone growth triple calcium phosphate as a stimulus to osteogenesis. Ann Surg, 1920: p. 32.
22. Hench L., Allen , Piotrowski An investigation of a prosthetic material. U.S. Army Med Res and Develop Command, Contract No, 1970-1975.
23. Hench P., Direct chemical bond of bioactive glass-ceramic material to bone and muscle. J Biomed Mater Res Symp, 1973. 4: p. 27-45.
24. Nakamura T., Yamamuro T., Higashi S., Kokubo T., and Itoo S., A New Glass-Ceramic for Bone-Replacement - Evaluation of Its Bonding to Bone Tissue. Journal of Biomedical Materials Research, 1985. 19(6): p. 685-698.
25. Lin F.H., Huang Y.Y., Hon M.H., and Wu S.C., Fabrication and Biocompatibility of a Porous Bioglass Ceramic in a Na2o-Cao-Sio2-P2o5 System. Journal of Biomedical Engineering, 1991. 13(4): p. 328-334.
26. Jacob, Handbook of biomedical engineering. Acad. Press, 1988.
27. Shapiro, Acrylic Cement in Orthopaedic Surgery. Personal Communication to J Charneley, E & S Livingstone, Edinburgh and London: p. 127.
28. Alici E., Alku O.Z., and Dost S., Prostheses Designed for Vertebral Body Replacement. Journal of Biomechanics, 1990. 23(8): p. 799-&.
29. Bilezikian R., Rodan, Principles of Bone Biology. San Diego, Academic Press, 1996: p. 25-38.
30. Uhrich K.E., Thomas T.T., Laurencin C.T., and Langer R., In vitro degradation characteristics of poly(anhydride-imides) containing trimellitylimidoglycine. Journal of Applied Polymer Science, 1997. 63(11): p. 1401-1411.
31. Yaszemski M.J., Payne R.G., Hayes W.C., Langer R., and Mikos A.G., Evolution of bone transplantation: Molecular, cellular and tissue strategies to engineer human bone. Biomaterials, 1996. 17(2): p. 175-185.
32. Mittelmeier H. and Katthagen B.D., Clinical-Experience in the Implantation of Collagen-Apatite for Local Bone Regeneration. Zeitschrift Fur Orthopadie Und Ihre Grenzgebiete, 1983. 121(2): p. 115-123.
33. Chieerici, Biological response to a lyophilised collagen gel implanted in parietal bone defects in a Rhesus monkey. Collagen Corporation Internal Publication, 1984: p. 116.
34. Rabkin E.a.F.J.S., Cardiovascular tissue engineering. Cardiovascular Pathology, 2002. 11(6): p. 305-317.
35. Klein C.P.A.T., Driessen A.A., Degroot K., and Vandenhooff A., Biodegradation Behavior of Various Calcium-Phosphate Materials in Bone Tissue. Journal of Biomedical Materials Research, 1983. 17(5): p. 769-784.
36. Oonishi H., Hench L.L., Wilson J., Sugihara F., Tsuji E., Kushitani S., and Iwaki H., Comparative bone growth behavior in granules of bioceramic materials of various sizes. Journal of Biomedical Materials Research, 1999. 44(1): p. 31-43.
37. Jiao Y.H., Li Y., Wang S., Zhang K., Jia Y.G., and Fu Y., Layer-by-Layer Assembly of Poly(lactic acid) Nanoparticles: A Facile Way to Fabricate Films for Model Drug Delivery. Langmuir, 2010. 26(11): p. 8270-8273.
38. Ratner H., Schoen, Lemons, Biomaterial science. Elsevier Academic Press, 2004.
39. Wang L.M. and Stegemann J.P., Thermogelling chitosan and collagen composite hydrogels initiated with beta-glycerophosphate for bone tissue engineering. Biomaterials, 2010. 31(14): p. 3976-3985.
40. Mooney D.T., Mazzoni C.L., Breuer C., McNamara K., Hern D., Vacanti J.P., and Langer R., Stabilized polyglycolic acid fibre based tubes for tissue engineering. Biomaterials, 1996. 17(2): p. 115-124.
41. Thomson R.C., Yaszemski M.J., Powers J.M., and Mikos A.G., Hydroxyapatite fiber reinforced poly(alpha-hydroxy ester) foams for bone regeneration. Biomaterials, 1998. 19(21): p. 1935-1943.
42. Nam Y.S. and Park T.G., Biodegradable polymeric microcellular foams by modified thermally induced phase separation method. Biomaterials, 1999. 20(19): p. 1783-1790.
43. Nam Y.S., Yoon J.J., and Park T.G., A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. Journal of Biomedical Materials Research, 2000. 53(1): p. 1-7.
44. Hsieh W.C., Chang C.P., and Lin S.M., Morphology and characterization of 3D micro-porous structured chitosan scaffolds for tissue engineering. Colloids and Surfaces B-Biointerfaces, 2007. 57(2): p. 250-255.
45. Hsieh C.Y., Tsai S.P., Ho M.H., Wang D.M., Liu C.E., Hsieh C.H., Tseng H.C., and Hsieh H.J., Analysis of freeze-gelation and cross-linking processes for preparing porous chitosan scaffolds. Carbohydrate Polymers, 2007. 67(1): p. 124-132.
46. Hoffmann B., Seitz D., Mencke A., Kokott A., and Ziegler G., Glutaraldehyde and oxidised dextran as crosslinker reagents for chitosan-based scaffolds for cartilage tissue engineering. Journal of Materials Science-Materials in Medicine, 2009. 20(7): p. 1495-1503.
47. Murphy W.L., Dennis R.G., Kileny J.L., and Mooney D.J., Salt fusion: An approach to improve pore interconnectivity within tissue engineering scaffolds. Tissue Engineering, 2002. 8(1): p. 43-52.
48. Wake P., Mikos, Pore morphology effects on the fibrovasular tissue growth in porous polymer substrates. Cell Transplantation, 1994. 3(4): p. 339-343.
49. Zeltinger J., Sherwood J.K., Graham D.A., Mueller R., and Griffith L.G., Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Engineering, 2001. 7(5): p. 557-572.
50. Zeltinger J., Landeen L.K., Alexander H.G., Kidd I.D., and Sibanda B., Development and characterization of tissue-engineered aortic valves. Tissue Engineering, 2001. 7(1): p. 9-22.
51. Hou Q.P., Grijpma D.W., and Feijen J., Porous polymeric structures for tissue engineering prepared by a coagulation, compression moulding and salt leaching technique. Biomaterials, 2003. 24(11): p. 1937-1947.
52. Yang Y.F., Zhao J., Zhao Y.H., Wen L., Yuan X.Y., and Fan Y.B., Formation of porous PLGA scaffolds by a combining method of thermally induced phase separation and porogen leaching. Journal of Applied Polymer Science, 2008. 109(2): p. 1232-1241.
53. Lee H.J. and Matsuda T., Surface photograft polymerization on segmented polyurethane using the iniferter technique. Journal of Biomedical Materials Research, 1999. 47(4): p. 564-567.
54. Kim J.H. and Kim S.C., PEO-grafting on PU/PS IPNs for enhanced blood compatibility - effect of pendant length and grafting density. Biomaterials, 2002. 23(9): p. 2015-2025.
55. Srinivasan B., Lucas, Bauer, Sawyer, Effect of varying electrolyte concentration on in vitro streaming potentials across canine aorta and carotid arteries. J. Biomed. Mater. Res, 1967. 1: p. 355.
56. Lee J.H., Khang G., Lee J.W., and Lee H.B., Platelet adhesion onto chargeable functional group gradient surfaces. Journal of Biomedical Materials Research, 1998. 40(2): p. 180-186.
57. Kim Y.H., Han D.K., Park K.D., and Kim S.H., Enhanced blood compatibility of polymers grafted by sulfonated PEO via a negative cilia concept. Biomaterials, 2003. 24(13): p. 2213-2223.
58. You Y., Min B.M., Lee S.J., Lee T.S., and Park W.H., In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 2005. 95(2): p. 193-200.
59. Siao F.Y., Lu J.F., Wang J.S., Inbaraj B.S., and Chen B.H., In Vitro Binding of Heavy Metals by an Edible Biopolymer Poly(gamma-glutamic acid). Journal of Agricultural and Food Chemistry, 2009. 57(2): p. 777-784.
60. Chang K.Y., Cheng L.W., Ho G.H., Huang Y.P., and Lee Y.D., Fabrication and characterization of poly(gamma-glutamic acid)-graft-chondroitin sulfate/polycaprolactone porous scaffolds for cartilage tissue engineering. Acta Biomaterialia, 2009. 5(6): p. 1937-1947.
61. Hsieh C.Y., Tsai S.P., Wang D.M., Chang Y.N., and Hsieh H.J., Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials, 2005. 26(28): p. 5617-5623.
62. Hoerstrup S.P., Sodian R., Daebritz S., Wang J., Bacha E.A., Martin D.P., Moran A.M., Guleserian K.J., Sperling J.S., Kaushal S., Vacanti J.P., Schoen F.J., and Mayer J.E., Functional living trileaflet heart valves grown in vitro. Circulation, 2000. 102(19): p. 44-49.
63. Freed M., Nohria, Emmanual, Mikos, and Langer, Neocartilage formation in vitro and in vivo using cells cultured on synthetic biodegradable polymers. J. Biomed. Mater. Res, 1993. 27: p. 11-23.
64. Radin S.R. and Ducheyne P., Effect of Bioactive Ceramic Composition and Structure on in-Vitro Behavior .3. Porous Versus Dense Ceramics. Journal of Biomedical Materials Research, 1994. 28(11): p. 1303-1309.
65. Hyun-Seung Ryua K.S.H., Magnesia-doped HA/b-TCPceramics and evaluation of their biocompatibility. Biomaterials, 2004. 25: p. 393-401.
66. Liu Q., de Wijn J.R., and van Blitterswijk C.A., A study on the grafting reaction of isocyanates with hydroxyapatite particles. Journal of Biomedical Materials Research, 1998. 40(3): p. 358-364.
67. Bhaskar S.N., Brady J.M., Getter L., Grower M.F., and Driskell T., Biodegradable Ceramic Implants in Bone - Electron and Light Microscopic Analysis. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontics, 1971. 32(2): p. 336-&.
68. Koster K., Heide H., and Konig R., Resorbable Calcium-Phosphate Ceramics under Load. Langenbecks Archiv Fur Chirurgie, 1977. 343(3): p. 173-181.
69. Khor H.L., Ng K.W., Schantz J.T., Phan T.T., Lim T.C., Teoh S.H., and Hutmacher D.W., Poly(epsilon-caprolactone) films as a potential substrate for tissue engineering an epidermal equivalent. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2002. 20(1-2): p. 71-75.
70. Serrano M.C., Pagani R., Vallet-Regi M., Pena J., Ramila A., Izquierdo I., and Portoles M.T., In vitro biocompatibility assessment of poly(epsilon-caprolactone) films using L929 mouse fibroblasts. Biomaterials, 2004. 25(25): p. 5603-5611.
71. Li X.R., Xie J.W., Yuan X.Y., and Xia Y.N., Coating Electrospun Poly(epsilon-caprolactone) Fibers with Gelatin and Calcium Phosphate and Their Use as Biomimetic Scaffolds for Bone Tissue Engineering. Langmuir, 2008. 24(24): p. 14145-14150.
72. Kim K.J. and White J.L., Effects of Regenerated Cellulose and Natural Fiber on Interfacial Adhesion, Rheology and Crystallization Property in epsilon-Polycaprolactone Compounds. Composite Interfaces, 2009. 16(7-9): p. 619-637.
73. Mavis B., Demirtas T.T., Gumusderelioglu M., Gunduz G., and Colak U., Synthesis, characterization and osteoblastic activity of polycaprolactone nanofibers coated with biomimetic calcium phosphate. Acta Biomaterialia, 2009. 5(8): p. 3098-3111.
74. Lin F.H., Yao C.H., Sun J.S., Liu H.C., and Huang C.W., Biological effects and cytotoxicity of the composite composed by tricalcium phosphate and glutaraldehyde cross-linked gelatin. Biomaterials, 1998. 19(10): p. 905-917.
75. Liu H.C., Yao C.H., Sun J.S., Lee T.J., Huang C.W., and Lin F.H., Osteogenic evaluation of glutaraldehyde crosslinked gelatin composite with fetal rat calvarial culture model. Artificial Organs, 2001. 25(8): p. 644-654.
76. Jiang L., Chen Y.L., and Hu C.P., Polyurethaneurea aqueous dispersions prepared with diethyltoluenediamine as chain extender. Journal of Coatings Technology and Research, 2007. 4(1): p. 59-66.
77. Li Q.A. and Sun D.C., Synthesis and characterization of high solid content aqueous polyurethane dispersion. Journal of Applied Polymer Science, 2007. 105(5): p. 2516-2524.
78. Barikani M., Ebrahimi M.V., and Mohaghegh S.M.S., Preparation and characterization of aqueous polyurethane dispersions containing ionic centers. Journal of Applied Polymer Science, 2007. 104(6): p. 3931-3937.
79. Lahtinen M. and Price C., Aqueous poly(urethane-urea) dispersions and cast films based on m-TMXDL. 1. Structure-property relationships. Polymer International, 2002. 51(4): p. 353-361.
80. Durrieu V. and Gandini A., Preparation of aqueous anionic poly(urethane-urea) dispersions. Influence of the structure and molecular weight of the macrodiol on the dispersion and polymer properties. Polymer International, 2005. 54(9): p. 1280-1287.
81. Chan W.C. and Chen S.A., Polyurethane Ionomers - Effects of Emulsification on Properties of Hexamethylene Diisocyanate-Based Polyether Polyurethane Cationomers. Polymer, 1988. 29(11): p. 1995-2001.
82. Nanda A.K., Wicks D.A., Madbouly S.A., and Otaigbe J.U., Effect of ionic content, solid content, degree of neutralization, and chain extension on aqueous polyurethane dispersions prepared by prepolymer method. Journal of Applied Polymer Science, 2005. 98(6): p. 2514-2520.
83. Nanda A.K. and Wicks D.A., The influence of the ionic concentration, concentration of the polymer, degree of neutralization and chain extension on aqueous polyurethane dispersions prepared by the acetone process. Polymer, 2006. 47(6): p. 1805-1811.
84. Chen K.Y., Kuo J.F., and Chen C.Y., Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials, 2000. 21(2): p. 161-171.
85. Sugano S., Chinwanitcharoen C., Kanoh S., Yamada T., Hayashi S., and Tada K., Preparation of aqueous polyurethane dispersions using aromatic diisocyanate. Macromolecular Symposia, 2006. 239: p. 51-57.
86. Dekker, waterborne coating and additives. Royal society of chemistry:Cambridge,england, 1995: p. 24.
87. Lu M.G., Lee J.Y., Shim M.J., and Kim S.W., Synthesis and properties of anionic aqueous polyurethane dispersions. Journal of Applied Polymer Science, 2002. 86(14): p. 3461-3465.
88. Cheong I.W., Nomura M., and Kim J.H., Synthesis and aqueous solution behavior of water-soluble polyurethane (IPDI-PPG-DMPA) resin. Macromolecular Chemistry and Physics, 2000. 201(17): p. 2221-2227.
89. Ebrahimi M.V., Barikani M., Mohammad S., and Mohaghegh S., Synthesis and properties of ionic polyurethane dispersions: Influence of polyol molecular weight. Iranian Polymer Journal, 2006. 15(4): p. 323-330.
90. Bao L.H., Lan Y.J., and Zhang S.F., Effect of NCO/OH molar ratio on the structure and properties of aqueous polyurethane from modified castor oil. Iranian Polymer Journal, 2006. 15(9): p. 737-746.
91. Ho G.H., Ho T.I., Hsieh K.H., Su Y.C., Lin P.Y., Yang J., Yang K.H., and Yang S.C., gamma-polyglutamic acid produced by Bacillus subtilis (natto): Structural characteristics, chemical properties and biological functionalities. Journal of the Chinese Chemical Society, 2006. 53(6): p. 1363-1384.
92. Sanosh K.P., Chu M.C., Balakrishnan A., Kim T.N., and Cho S.J., Sol-gel synthesis of pure nano sized beta-tricalcium phosphate crystalline powders. Current Applied Physics, 2010. 10(1): p. 68-71.
93. Vani R., Girija E.K., Elayaraja K., Parthiban S.P., Kesavamoorthy R., and Kalkura S.N., Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate. Journal of Materials Science-Materials in Medicine, 2009. 20: p. 43-48.
94. Ryu H.S., Hong K.S., Lee J.K., Kim D.J., Lee J.H., Chang B.S., Lee D.H., Lee C.K., and Chung S.S., Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Biomaterials, 2004. 25(3): p. 393-401.
95. Xue W.C., Bandyopadhyay A., and Bose S., Polycaprolactone Coated Porous Tricalcium Phosphate Scaffolds for Controlled Release of Protein for Tissue Engineering. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2009. 91B(2): p. 831-838.
96. Koch B., Wolke J.G.C., and Degroot K., X-Ray-Diffraction Studies on Plasma-Sprayed Calcium Phosphate-Coated Implants. Journal of Biomedical Materials Research, 1990. 24(6): p. 655-667.
97. Mao J.S., Zhao L.G., Yin Y.J., and Yao K.D., Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials, 2003. 24(6): p. 1067-1074.
98. Guan J.J., Fujimoto K.L., Sacks M.S., and Wagner W.R., Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 2005. 26(18): p. 3961-3971.
99. Madihally S.V. and Matthew H.W.T., Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999. 20(12): p. 1133-1142.
校內:2020-12-20公開