| 研究生: |
林鈺婷 Lin, Yu-Ting |
|---|---|
| 論文名稱: |
以碳熱還原法去除轉爐石中的磷 Removal of phosphorus from steel-making slag by carbothermic reduction |
| 指導教授: |
劉守恒
Liu, Shou-Heng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 鹼性氧氣爐渣(轉爐石) 、脫磷 、鹽基度 |
| 外文關鍵詞: | basic oxygen furnace slag, dephosphorization, basicity |
| 相關次數: | 點閱:152 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹼性氧氣爐(BOF)爐渣是煉鋼的主要副產品之一,隨著鋼產量的增加,爐渣產生的增長率也在增加。由於轉爐爐渣中的大多數元素都是有益成分,因此可以在煉鋼過程中作為原料再利用。但是,鹼性氧氣爐渣中的高磷含量限制了其在煉鋼過程中的循環利用。轉爐爐中大部分的磷會與矽酸二鈣(Ca2SiO4, C2S)結合形成Ca2SiO4˖Ca3(PO4)2固溶體。因此,在不引起其他有害影響的情況下除去爐渣中磷的方法來提高轉爐石的循環利用是迫切急需的。本實驗研究了從轉爐爐渣中還原P2O5的方法。在不同溫度(1500℃和1600℃)的條件下,將石墨、二氧化矽、氯化鈣和氯化鈣作為脫磷劑,並以XRF分析爐渣的化學成分、XRD鑑定結晶相、ICP-OES測水中磷與鐵中磷含量以及EMPA與WDS進行爐渣相的成份定性及定量分析。實驗結果顯示,SiO2有利於爐渣中磷的還原,但是過多的SiO2可能引起再磷化現象。Al2O3有利於鐵的還原,但會形成Ca2Al2O7的相,不利於磷的還原。CaCl2在800-900℃下會分解成CaO而提高鹼度,因此顯著降低了磷的還原。而在還原溫度為1500℃下,石墨比例為7wt. %、二氧化矽比例為5wt. %時有最佳的磷蒸發速率。此外,在1600℃時,石墨比例為7 wt. %、二氧化矽比例為10 wt. %的條件下有最佳脫磷率。實驗後的EPMA觀察到大部分磷集中在金屬相中且磷會隨著石墨添加量增加而提升。
Basic oxygen furnace (BOF) slag is a main byproduct in steelmaking and the growth rate of slag generation is increasing as steel production increases. Due to most of the elements in the converter slag are beneficial components, it can be reused as a raw material in the steelmaking process. However, the high phosphorus content in the basic oxygen furnace slag limits its recycling in the steel-making process. Most of phosphorus in BOF slag is incorporated with Ca2SiO4 to form a Ca2SiO4˖Ca3(PO4)2 solid solution. Therefore, it is necessary to find a method to remove phosphorus in slag without causing other harmful effects, in order to activate BOF slag recycling. In this work, the reduction of P2O5 from the BOF slag was investigated. Graphite, SiO2, CaCl2 and Al2O3 were used as dephosphorization agents under conditions of different temperatures (1500°C and 1600°C). The chemical compositions of the slag are analyzed with XRF. The crystalline phases of the slag are obtained by XRD. The phosphorus contents in the iron particles and solution are analyzed by ICP-OES. Elemental mapping and compositional analysis of P-phase of the slags are quantitatively characterized using EMPA and WDS analysis. The experimental results show that SiO2 favors reduction of phosphorus in the slag, but excess SiO2 may cause re-dephosphorization. The Al2O3 is good for reduction of iron, but it decreases the reduction of phosphorus due to the formation of Ca2Al2O7. Due to the dissociation of CaCl2 into CaO at 800-900°C, the increased basicity inhibits the dephosphorization. The best phosphorus vaporization rate is carried out at1500°C, with the graphite and SiO2 mixing ratio of 7 wt.% and 5 wt.%, respectively. Moreover, the best dephosphorization rate under conditions of 7 wt.% C and 10 wt.% SiO2 at 1600°C. EPMA observation of the slag after the experiment showed that most of phosphorus concentrated in the metal phase and the content of phosphorus in the metal phase increase with the increasing of graphite content.
Cavaliere, P. (2019). Clean Ironmaking and Steelmaking Processes: Efficient Technologies for Greenhouse Emissions Abatement. Clean Ironmaking and Steelmaking Processes, 275-301.
Choi, S.-M. J. Y.-J. D. J.-H. (2006). Reduction behavior of BOF type slags by solid carbon. Steel Research International, 77(5), 305-311.
Diao, J., Ke, Z., Jiang, L., Zhang, T., & Xie, B. (2016). Influence of Al2O3modification on phosphorus enrichment in high phosphorus slag. Mineral Processing and Extractive Metallurgy, 125(2), 103-108.
Drain, P. B., Monaghan, B. J., Zhang, G., Longbottom, R. J., Chapman, M. W., & Chew, S. J. (2017). A review of phosphorus partition relations for use in basic oxygen steelmaking. Ironmaking & Steelmaking, 44(10), 721-731.
Du, C.-M., Gao, X., Ueda, S., & Kitamura, S.-Y. (2019). Separation and recovery of phosphorus from steelmaking slag via a selective leaching–chemical precipitation process. Hydrometallurgy, 189.
Jiang, L., Bao, Y., Hu, X., Chen, Y., Liu, G., Han, F., Yang, Q., & Wu, J. (2018). Experimental investigation on BOF slag oxidation in air. Ironmaking & Steelmaking, 46(8), 747-754.
Koizumi, S., Miki, T., & Nagasaka, T. (2015). Enrichment of Phosphorus Oxide in Steelmaking Slag by Utilizing Capillary Action. Journal of Sustainable Metallurgy, 2(1), 38-43.
Krasnyanskaya, I. A., & Podgorodetskii, G. S. (2014). Removal of phosphorus from CaO-SiO2-MgO-Al2O3-P2O5 melts to the gas phase. Steel in Translation, 44(5), 345-349.
Kumar, V., Kumar, S., Prasad, J., Keshari, K., Ghosh, S., & Bhakat, A. K. (2017). Feasibility Study of Dephosphorization of Slag Generated from Basic Oxygen Furnace of an Integrated Steel Plant. International Journal of Metallurgical Engineering, 6(2), 31-35.
Lee, Y. S., Min, D. J., Jung, S. M., & Yi, S. H. (2004). Influence of Basicity and FeO Content on Viscosity of Blast Furnace Type Slags Containing FeO. ISIJ International, 44, 1283-1290.
Lin, C.-M., Yu, C. W., Wu, W., Li, C. C., & Chang, K. L. (2018). Effect of FeO-CaO-SiO2-MgO-xAl2O3 Slags with 12.0~26.0 wt.% Al2O3 Content on Dephosphorization of Molten Steel. Key Engineering Materials, 773, 184-188.
Liu, C., & Huang, M. G. L. P. B. B. S. (2016). Effect of Basicity on Basic Oxygen Furnace (BOF) Slag Solidification Microstructure and Mineralogy. Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts, 1185-1190.
Liu, C., Huang, S., Wollants, P., Blanpain, B., & Guo, M. (2017). Valorization of BOF Steel Slag by Reduction and Phase Modification: Metal Recovery and Slag Valorization. Metallurgical and Materials Transactions B, 48(3), 1602-1612.
Luz, A. P., Tomba Martinez, A. G., López, F., Bonadia, P., & Pandolfelli, V. C. (2018). Slag foaming practice in the steelmaking process. Ceramics International, 44(8), 8727-8741.
Miki, T., & Kaneko, S. (2015). Separation of FeO and P2O5 from Steelmaking Slag Utilizing Capillary Action. ISIJ International, 55(1), 142-148.
Mochizuki, Y., Tsubouchi, N., & Sugawara, K. (2020). Separation of valuable elements from steel making slag by chlorination. Resources, Conservation and Recycling, 158, 104815.
Numata, M., Maruoka, N., Kim, S.-J., & Kitamura, S.-y. (2014). Fundamental Experiment to Extract Phosphorous Selectively from Steelmaking Slag by Leaching. ISIJ International, 54(8), 1983-1990.
Rao, L., Dong, Y., Gui, M., Zhang, Y., Shen, X., Wu, X., & Cao, F. (2020). Growth, Stratification, and Liberation of Phosphorus-Rich C2S in Modified BOF Steel Slag. Materials (Basel), 13(1), 203.
Su, T.-H., Yang, H.-J., Lee, Y.-C., Shau, Y.-H., Takazawa, E., Lin, M.-F., Mou, J.-L., & Jiang, W.-T. (2016). Reductive Heating Experiments on BOF-Slag: Simultaneous Phosphorus Re-Distribution and Volume Stabilization for Recycling. Steel Research International, 87(11), 1511-1526.
Uchida, Y.-i., Sasaki, N., & Miki, Y. (2018). Change of Phosphorus-Concentrated Phase in Low Basicity Steelmaking Slag. ISIJ International, 58(5), 869-875.
Wu, X. R., Yang, G. M., Li, L. S., Lü, H. H., Wu, Z. J., & Shen, X. M. (2013). Wet magnetic separation of phosphorus containing phase from modified BOF slag. Ironmaking & Steelmaking, 41(5), 335-341.
Xia, Y., Li, J., Fan, D., & Hou, G. (2019). Effects of Interfacial Oxygen Potential and Slag Phase Changing during Slag Formation Process on Dephosphorization Behavior. ISIJ International, 59(9), 1519-1526.
Xue, P., He, D., Xu, A., Gu, Z., Yang, Q., Engström, F., & Björkman, B. (2017). Modification of industrial BOF slag: Formation of MgFe2O4 and recycling of iron. Journal of Alloys and Compounds, 712, 640-648.
Xue, Y. K., Wang, S. H., Zhao, D. G., & Li, C. X. (2019). Experimental Study on Phosphorus Vaporization for Converter Slag by SiC Reduction, REWAS 2019, 391-399.
Xue, Y. K., Zhao, D. G., Wang, S. H., Li, C. X., & Guo, R. H. (2019). Phosphorus vaporization behaviour from converter slag. Ironmaking & Steelmaking, 1-7.
Zhang, W., Liu, W., Li, J., Shang, Y., Liu, Z., & Xing, H. (2016). High phosphorus slag gasificating dephosphorization of sintering atmosphere. Integrated Ferroelectrics, 168(1), 107-114.