| 研究生: |
黃泓文 Huang, Hong-wen |
|---|---|
| 論文名稱: |
局部雙扭超立方體之限制連通度研究 A Study of Restricted Connectivity of Locally Twisted Cubes |
| 指導教授: |
胡敏君
Hu, Min-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 英文 |
| 論文頁數: | 31 |
| 中文關鍵詞: | 多處理機系統 、圖論 、限制連通度 、局部雙扭超立方體 |
| 外文關鍵詞: | Multiprocessor Systems, Graph Theory, Restricted Connectivity, Locally Twisted Cubes |
| 相關次數: | 點閱:122 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本篇論文中,給定一個圖形G以及一個非負整數h,而h-限制連通度
是指在G中的一個最小基數點集合,假使存在這個點集合,從圖G中移除,
使圖G會產生出許多連通圖,而每一個在連通圖內的點都必須滿足分枝度
(degree) 至少為h,這個h-限制連通度是一個通用且典型的連通度
(connectivity)性質,並且針對現今的大型多處理器系統提供可靠度以及容錯(fault-tolerance)標準。接下來介紹局部雙扭超立方體(locally twisted cubes),在建構多處理器系統中,是一個大眾廣泛所知的網路拓墣結構,可被標示為LTQn。在本篇論文中,我們首先證明局部雙扭超立方體的2-限制連通度等於4n−8當n≥4,而後面接著證明3-限制連通度等於8n−24當n≥5。
Give a graph G and non-negative integer h, the h-restricted connectivity of G is the minimum cardinality of a set of nodes in G, if exists, whose deletion disconnects G and the degree of each node in every remaining component is at least h. The h-restricted
connectivity is a generalization of the classical connectivity and can provide more accurate measures for the reliability or fault-tolerance of multiprocessor system. The n-dimensional locally twisted cubes, denoted by LTQn, is a well-know network topology for building
multiprocessor systems.
In this paper, we first show that 2-restricted connectivity of the n-dimensional locally twisted cubes is 4n-8 for n≥4, and show that 3-restricted
connectivity is equal to 8n-24 for n≥5.
[1] N. W. Chang, S. Y. Hsieh, "{2, 3}-extracoonectivities of hypercube-like networks,"Journal of Computer and System Sciences, 79(5): 669-688, 2013.
[2] N. W. Chang, C. Y. Tsai, and S. Y. Hsieh, "On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes," IEEE Transactions on Computers, 63(6):
1593-1599, 2014.
[3] Y. C. Chen and J. M. Tan, Restricted connectivity for three families of intercon-nection network," Applied Mathematics and Computation, 188: 1848-1855, 2007.
[4] K. Day and A. E. Ai-Ayyoub, "The conditional node connectivity of the k-ary n-cube networks," IEEE Transactions Parallel Distribution Systems, 5(1): 13-26, 2004.
[5] A. H. Esfahanian, "Generalized measures of fault tolerance with application to n-cube networks," IEEE Transactions on Computers, 38(11): 1586-1591, 1989.
[6] J. Fabrega and M. A. Fiol, "Extraconnectivity of graphs with large girth," Discrete Mathematics, 127: 163-170, 1994.
[7] J. Fabrega and M. A. Fiol, "On the extraconnectivity of graphs," Discrete Mathematics, 155: 49-57, 1996.
[8] J. Fan, S. Zhang, X. Jia, and G. Zhang,"The restricted connectivity of locally twisted cubes," in Proceeding of International Symposium on Pervasive Systems, Algorithms,and Networks, pp. 574-578, 2009.
[9] F. Harary, "Conditional connectivity," Networks, vol. 13, issue 3, pp. 347-357, 1983.
[10] W. S. Hong and S. Y. Hsieh, "Extra edge connectivity of hypercube-like networks," International Journal of Parallel, Emergent and Distributed Systems, 28(2): 123-133,2013.
[11] S. Y. Hsieh and Y. H. Chang, "Extraconnectivity of k-ary n-cube networks," Theoretical Computer Science, 443(20): 63-69, 2012.
[12] S. C. Hu and C. B. Yang, "Fault tolerance on star graphs," Foundations of ComputerScience, 8: 127-142, 1997.
[13] S. Lati¯, M. Hegde, M. Naraghi-Pour, "Conditional connectivity measures for large multiprocessor systems," IEEE Transations on Computers, 43: 218-222, 1994.
[14] L. Lin, L. Xu, S. Zhou and S. Y. Hsieh, "The Extra, Restricted Connectivity and Conditional Diagnosability of Split-Star Networks," IEEE Transactions on Parallel
and Distributed Systems, accepted, 2015.
[15] M. J. Ma, G. Z. Liu, and J. M. Xu, "The super connectivity of augmented cubes,"Information Processing Letters, 106: 59-63, 2008.
[16] J. X. Meng, "Optimally super-edge-connected transitive graphs," Discrete Mathematics 260(1): 239-248, 2003.
[17] J. X. Meng and Y. H. Ji, "On a kind of restricted edge connectivity of graphs,"Discrete applied mathematics, 117: 183-193, 2002.
[18] M.Wang and Q. Li, "Conditional edge connectivity properties, reliability comparisonand transitivity of graphs," Discrete Mathematics, 258(1-3), pp. 205-214, 2002.
[19] S. Y. Wang, J. Yuan, and A. X. Liu, "k-restricted edge connectivity for some inter-connection networks," Applied Mathematics and Computation,201(1-2), pp. 587-596,2008.
[20] M.Wan, Z. Zhang, "A kind of conditional vertex connectivity of star graphs," Applied Mathematics Letters, 22(264-267), 2009.
[21] D. B. West, "Introduction to Graph Theory," Prentice Hall Publishers, 2001.
[22] J. M. Xu, "Topological structure and analysis of interconnection network," Kluwer AcademicPublishers, 2001.
[23] J. M. Xu, J. W. Wang, and W. W. Wang, "On super and restricted connectivity of some interconnection networks," Ars Combinatoria, 94, 2010.
[24] J. M. Xu, K. L. Xu, "On restricted edge-connectivity of graphs," Discrete Mathematics, 22:887-891, 2009.
[25] J. M. Xu, M. Xu, Q. Zhu, "The super connectivity of shuffle-cubes," Information Processing Letters, 96: 123-127, 2005.
[26] J. M. Xu, Q. Zhu, and M. Xu, "Fault-tolerant analysis of a class of network," Information Processing Letters, 103(6): 222-226, 2007.
[27] J. M. Xu, Q. Zhu, X. M. Hou, and T. Zhou, "On restricted connectivity and extra connectivity of hypercubes and folded hypercubes," J. Shanghai Jiaotong Univ.(Sci.), E-10(2): 208-212, 2005.
[28] X. Y. Yang, D. J. Evans, and G. M. Megson, "The locally twisted cubes," International Journal of Computer Mathematic, 82(4): 401-413, 2005.
[29] X. Y. Yang, G. M. Megson, and D. J. Evans, "Locally twisted cubes are 4-pancyclic," Applied Mathematics Letters, 17: 919-925, 2004.
[30] W. Yang, H. Li, J. X. Meng, "Conditional connectivity of Cayley graphs generated by transposition trees," Information Processing Letters, 110: 1027-1030,2010.
[31] W. Yang, H. Z. Li, X. F. Guo, "A kind of condional fault tolerance of (n,k)-star graphs," Information Processing Letters, 110: 1007-1011, 2010.
[32] Z. Zhang, W. Xiong, and W. Yang, "A kind of conditional fault tolerance of alternating group graphs," Information processing Letters, 110:998-1002, 2010.
[33] S. Zhou, "The conditional diagnosability of of locally twisted cubes," Proceeding of International Conference on Computer Science & Education, DOI: 10.1109:221-226, 2009.
[34] Q. Zhu, "On conditional diagnosability and reliability of the BC networks," The journal of Super Computing, 45: 173-184, 2008.
校內:2018-07-29公開