簡易檢索 / 詳目顯示

研究生: 黃泓文
Huang, Hong-wen
論文名稱: 局部雙扭超立方體之限制連通度研究
A Study of Restricted Connectivity of Locally Twisted Cubes
指導教授: 胡敏君
Hu, Min-Chun
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 31
中文關鍵詞: 多處理機系統圖論限制連通度局部雙扭超立方體
外文關鍵詞: Multiprocessor Systems, Graph Theory, Restricted Connectivity, Locally Twisted Cubes
相關次數: 點閱:122下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,給定一個圖形G以及一個非負整數h,而h-限制連通度
    是指在G中的一個最小基數點集合,假使存在這個點集合,從圖G中移除,
    使圖G會產生出許多連通圖,而每一個在連通圖內的點都必須滿足分枝度
    (degree) 至少為h,這個h-限制連通度是一個通用且典型的連通度
    (connectivity)性質,並且針對現今的大型多處理器系統提供可靠度以及容錯(fault-tolerance)標準。接下來介紹局部雙扭超立方體(locally twisted cubes),在建構多處理器系統中,是一個大眾廣泛所知的網路拓墣結構,可被標示為LTQn。在本篇論文中,我們首先證明局部雙扭超立方體的2-限制連通度等於4n−8當n≥4,而後面接著證明3-限制連通度等於8n−24當n≥5。

    Give a graph G and non-negative integer h, the h-restricted connectivity of G is the minimum cardinality of a set of nodes in G, if exists, whose deletion disconnects G and the degree of each node in every remaining component is at least h. The h-restricted
    connectivity is a generalization of the classical connectivity and can provide more accurate measures for the reliability or fault-tolerance of multiprocessor system. The n-dimensional locally twisted cubes, denoted by LTQn, is a well-know network topology for building
    multiprocessor systems.
    In this paper, we first show that 2-restricted connectivity of the n-dimensional locally twisted cubes is 4n-8 for n≥4, and show that 3-restricted
    connectivity is equal to 8n-24 for n≥5.

    Contents---(iii) List of Tables---(iv) List of Figures---(v) 1.Introduction---(1) 2.Preliminaries---(3) 3.2-Restricted Connectivity of Locally Twisted Cubes---(7) 4.3-Restricted Connectivity of Locally Twisted Cubes---(16) 5.Concluding Remarks---(27) 6.Bibliography---(28)

    [1] N. W. Chang, S. Y. Hsieh, "{2, 3}-extracoonectivities of hypercube-like networks,"Journal of Computer and System Sciences, 79(5): 669-688, 2013.

    [2] N. W. Chang, C. Y. Tsai, and S. Y. Hsieh, "On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes," IEEE Transactions on Computers, 63(6):
    1593-1599, 2014.

    [3] Y. C. Chen and J. M. Tan, Restricted connectivity for three families of intercon-nection network," Applied Mathematics and Computation, 188: 1848-1855, 2007.

    [4] K. Day and A. E. Ai-Ayyoub, "The conditional node connectivity of the k-ary n-cube networks," IEEE Transactions Parallel Distribution Systems, 5(1): 13-26, 2004.

    [5] A. H. Esfahanian, "Generalized measures of fault tolerance with application to n-cube networks," IEEE Transactions on Computers, 38(11): 1586-1591, 1989.

    [6] J. Fabrega and M. A. Fiol, "Extraconnectivity of graphs with large girth," Discrete Mathematics, 127: 163-170, 1994.

    [7] J. Fabrega and M. A. Fiol, "On the extraconnectivity of graphs," Discrete Mathematics, 155: 49-57, 1996.

    [8] J. Fan, S. Zhang, X. Jia, and G. Zhang,"The restricted connectivity of locally twisted cubes," in Proceeding of International Symposium on Pervasive Systems, Algorithms,and Networks, pp. 574-578, 2009.

    [9] F. Harary, "Conditional connectivity," Networks, vol. 13, issue 3, pp. 347-357, 1983.

    [10] W. S. Hong and S. Y. Hsieh, "Extra edge connectivity of hypercube-like networks," International Journal of Parallel, Emergent and Distributed Systems, 28(2): 123-133,2013.

    [11] S. Y. Hsieh and Y. H. Chang, "Extraconnectivity of k-ary n-cube networks," Theoretical Computer Science, 443(20): 63-69, 2012.

    [12] S. C. Hu and C. B. Yang, "Fault tolerance on star graphs," Foundations of ComputerScience, 8: 127-142, 1997.

    [13] S. Lati¯, M. Hegde, M. Naraghi-Pour, "Conditional connectivity measures for large multiprocessor systems," IEEE Transations on Computers, 43: 218-222, 1994.

    [14] L. Lin, L. Xu, S. Zhou and S. Y. Hsieh, "The Extra, Restricted Connectivity and Conditional Diagnosability of Split-Star Networks," IEEE Transactions on Parallel
    and Distributed Systems, accepted, 2015.

    [15] M. J. Ma, G. Z. Liu, and J. M. Xu, "The super connectivity of augmented cubes,"Information Processing Letters, 106: 59-63, 2008.

    [16] J. X. Meng, "Optimally super-edge-connected transitive graphs," Discrete Mathematics 260(1): 239-248, 2003.

    [17] J. X. Meng and Y. H. Ji, "On a kind of restricted edge connectivity of graphs,"Discrete applied mathematics, 117: 183-193, 2002.
    [18] M.Wang and Q. Li, "Conditional edge connectivity properties, reliability comparisonand transitivity of graphs," Discrete Mathematics, 258(1-3), pp. 205-214, 2002.

    [19] S. Y. Wang, J. Yuan, and A. X. Liu, "k-restricted edge connectivity for some inter-connection networks," Applied Mathematics and Computation,201(1-2), pp. 587-596,2008.

    [20] M.Wan, Z. Zhang, "A kind of conditional vertex connectivity of star graphs," Applied Mathematics Letters, 22(264-267), 2009.

    [21] D. B. West, "Introduction to Graph Theory," Prentice Hall Publishers, 2001.

    [22] J. M. Xu, "Topological structure and analysis of interconnection network," Kluwer AcademicPublishers, 2001.

    [23] J. M. Xu, J. W. Wang, and W. W. Wang, "On super and restricted connectivity of some interconnection networks," Ars Combinatoria, 94, 2010.

    [24] J. M. Xu, K. L. Xu, "On restricted edge-connectivity of graphs," Discrete Mathematics, 22:887-891, 2009.

    [25] J. M. Xu, M. Xu, Q. Zhu, "The super connectivity of shuffle-cubes," Information Processing Letters, 96: 123-127, 2005.

    [26] J. M. Xu, Q. Zhu, and M. Xu, "Fault-tolerant analysis of a class of network," Information Processing Letters, 103(6): 222-226, 2007.

    [27] J. M. Xu, Q. Zhu, X. M. Hou, and T. Zhou, "On restricted connectivity and extra connectivity of hypercubes and folded hypercubes," J. Shanghai Jiaotong Univ.(Sci.), E-10(2): 208-212, 2005.

    [28] X. Y. Yang, D. J. Evans, and G. M. Megson, "The locally twisted cubes," International Journal of Computer Mathematic, 82(4): 401-413, 2005.

    [29] X. Y. Yang, G. M. Megson, and D. J. Evans, "Locally twisted cubes are 4-pancyclic," Applied Mathematics Letters, 17: 919-925, 2004.

    [30] W. Yang, H. Li, J. X. Meng, "Conditional connectivity of Cayley graphs generated by transposition trees," Information Processing Letters, 110: 1027-1030,2010.

    [31] W. Yang, H. Z. Li, X. F. Guo, "A kind of condional fault tolerance of (n,k)-star graphs," Information Processing Letters, 110: 1007-1011, 2010.

    [32] Z. Zhang, W. Xiong, and W. Yang, "A kind of conditional fault tolerance of alternating group graphs," Information processing Letters, 110:998-1002, 2010.

    [33] S. Zhou, "The conditional diagnosability of of locally twisted cubes," Proceeding of International Conference on Computer Science & Education, DOI: 10.1109:221-226, 2009.

    [34] Q. Zhu, "On conditional diagnosability and reliability of the BC networks," The journal of Super Computing, 45: 173-184, 2008.

    無法下載圖示 校內:2018-07-29公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE