| 研究生: |
黃冠堯 Huang, Guan-Yao |
|---|---|
| 論文名稱: |
人類E3泛素連接酶RAD18在姐妹染色體交換中調控功能的鑑定 Functional characterization of human E3 ubiquitin ligase RAD18 in regulation of sister chromatid exchange |
| 指導教授: |
廖泓鈞
Liaw, Hungjiun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生命科學系 Department of Life Sciences |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 中文 |
| 論文頁數: | 43 |
| 中文關鍵詞: | DNA損傷反應 、複製後修復機制 、順鉑抗藥性 、RAD18 E3泛素蛋白連接酶 、姊妹染色體互換 |
| 外文關鍵詞: | DNA damage response, Post-Replication Repair, cisplatin resistance, RAD18 E3 ubiquitin protein ligase, Sister chromatid exchange |
| 相關次數: | 點閱:202 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
複製後修復可以繞過由DNA損傷引起的複製叉停滯,並防止複製叉的斷裂,因此在維持基因組完整性方面有著重要的作用。先前,我們利用次世代定序進行了轉錄組分析,來比具較順鉑抗藥性的鼻咽癌 (NPC) 細胞株HONE6和HONE15及其親代細胞株HONE1之間的表達趨勢。結果顯示,在這些具順鉑抗藥性細胞中,范可尼貧血、同源重組和複製後修復相關的基因都有高度表達。因此,我們在本篇論文進一步鑑定了HONE6和HONE15細胞,發現具順鉑抗性的HONE6和HONE15細胞株不僅對順鉑具有抗性,而且對其他DNA損傷劑,包括甲磺酸甲酯 (MMS) 和4-硝基喹啉1氧化物 (4NQO),都有更高的抗性表現。我們還驗證了范可尼貧血、同源重組和複製後修復途徑中的數個基因,在HONE6和HONE15細胞中都有高度表達。其中,複製後修復途徑的RAD18基因,在HONE6和HONE15細胞中都高度表達,因此我們也在耗盡RAD18的細胞中確認了細胞存活率和姐妹染色體交換(SCE)的情形。意外的是,我們發現RAD18的耗竭使HONE1對MMS更加敏感,而在HONE6細胞中卻沒有觀察到此結果。另外,RAD18的耗竭會增加HONE1中的SCE,但在HONE6細胞中卻沒有表現出顯著差異。推測可能是由於HONE6細胞本來的SCE就已經有高量表現,這也就表示HONE6細胞中染色體的斷裂和重組正在不停發生。總結我們的結果表示,具化學抗性的NPC細胞會增強多種DNA修復途徑,並且這種增強作用可以促進細胞的化學抗性表型。
Post-replication repair can bypass stalled replication forks caused by DNA lesions and prevents collapse of forks, therefore playing an important role in maintenance of genome integrity. Previously, we performed transcriptome analysis to compare expression profiles between cisplatin-resistant NPC nasopharyngeal carcinoma (NPC) cell lines, HONE6 and HONE15, and their parental cell line HONE1. It revealed that Fanconi anemia (FA), homologous recombination (HR), and post-replication repair (PRR)-related genes are highly expressed in these cisplatin-resistant cells. Here, we further characterized HONE6 and HONE15 cells. We found that cisplatin-resistant HONE6 and HONE15 cell lines are not only resistant to cisplatin, but also exhibit higher resistance to other DNA damaging agents, including methyl methanesulfonate (MMS) and 4-Nitroquinoline 1-oxide (4NQO). We also verified that several genes in the FA, HR, and PRR pathways are highly expressed in HONE6 and HONE15 cells. Since RAD18 in the PRR pathway is highly expressed in HONE6 and HONE15 cells, we determined cell survival and sister chromatid exchange (SCE) in the RAD18-depleted cells. Surprisingly, the depletion of RAD18 sensitized cells to MMS in HONE1, but not in HONE6 cells. Additionally, the depletion of RAD18 increased SCE in HONE1, but showed no significant differences in HONE6 cells. It could be due to the fact that HONE6 cells have already exhibited elevated SCE, indicating that high frequency of chromosomal breaks and recombination have occurred in HONE6 cells. Our results reveal that the chemoresistant NPC cells enhance the multiple DNA repair pathways and the enhancement could contribute cells chemoresistant phenotype.
1. De Bont, R., and van Larebeke, N. (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19, 169-185
2. Bauer, N. C., Corbett, A. H., and Doetsch, P. W. (2015) The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 43, 10083-10101
3. Li, Z. D., Pearlman, A. H., and Hsieh, P. (2016) DNA mismatch repair and the DNA damage response. DNA Repair 38, 94-101
4. Ou, H. L., and Schumacher, B. (2018) DNA damage responses and p53 in the aging process. Blood 131, 488-495
5. O'Connor, M. J. (2015) Targeting the DNA Damage Response in Cancer. Mol Cell 60, 547-560
6. Liptay, M., Barbosa, J. S., and Rottenberg, S. (2020) Replication Fork Remodeling and Therapy Escape in DNA Damage Response-Deficient Cancers. Front Oncol 10, 670
7. Rosenberg, B., Vancamp, L., and Krigas, T. (1965) Inhibition of Cell Division in Escherichia Coli by Electrolysis Products from a Platinum Electrode. Nature 205, 698-699
8. Kelland, L. (2007) The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 7, 573-584
9. Hanigan, M. H., and Devarajan, P. (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1, 47-61
10. McWhinney, S. R., Goldberg, R. M., and McLeod, H. L. (2009) Platinum neurotoxicity pharmacogenetics. Mol Cancer Ther 8, 10-16
11. Seiwert, T. Y., Salama, J. K., and Vokes, E. E. (2007) The chemoradiation paradigm in head and neck cancer. Nat Clin Pract Oncol 4, 156-171
12. Einhorn, L. H. (1990) Treatment of testicular cancer: a new and improved model. J Clin Oncol 8, 1777-1781
13. Dasari, S., and Tchounwou, P. B. (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740, 364-378
14. Qin, L. F., and Ng, I. O. (2002) Induction of apoptosis by cisplatin and its effect on cell cycle-related proteins and cell cycle changes in hepatoma cells. Cancer Lett 175, 27-38
15. Auerbach, A. D. (2009) Fanconi anemia and its diagnosis. Mutat Res 668, 4-10
16. Niraj, J., Farkkila, A., and D'Andrea, A. D. (2019) The Fanconi Anemia Pathway in Cancer. Annu Rev Cancer Biol 3, 457-478
17. Castella, M., Jacquemont, C., Thompson, E. L., Yeo, J. E., Cheung, R. S., Huang, J. W., Sobeck, A., Hendrickson, E. A., and Taniguchi, T. (2015) FANCI Regulates Recruitment of the FA Core Complex at Sites of DNA Damage Independently of FANCD2. PLoS Genet 11, e1005563
18. Liang, C. C., Zhan, B., Yoshikawa, Y., Haas, W., Gygi, S. P., and Cohn, M. A. (2015) UHRF1 is a sensor for DNA interstrand crosslinks and recruits FANCD2 to initiate the Fanconi anemia pathway. Cell Rep 10, 1947-1956
19. Mamrak, N. E., Shimamura, A., and Howlett, N. G. (2017) Recent discoveries in the molecular pathogenesis of the inherited bone marrow failure syndrome Fanconi anemia. Blood Rev 31, 93-99
20. Huang, Y., and Li, L. (2013) DNA crosslinking damage and cancer - a tale of friend and foe. Transl Cancer Res 2, 144-154
21. D'Andrea, A. D. (2013) BRCA1: a missing link in the Fanconi anemia/BRCA pathway. Cancer Discov 3, 376-378
22. Wright, W. D., Shah, S. S., and Heyer, W. D. (2018) Homologous recombination and the repair of DNA double-strand breaks. J Biol Chem 293, 10524-10535
23. Schlacher, K., Christ, N., Siaud, N., Egashira, A., Wu, H., and Jasin, M. (2011) Double-strand break repair-independent role for BRCA2 in blocking stalled replication fork degradation by MRE11. Cell 145, 529-542
24. Hashimoto, Y., Ray Chaudhuri, A., Lopes, M., and Costanzo, V. (2010) Rad51 protects nascent DNA from Mre11-dependent degradation and promotes continuous DNA synthesis. Nat Struct Mol Biol 17, 1305-1311
25. Zhao, W., Steinfeld, J. B., Liang, F., Chen, X., Maranon, D. G., Jian Ma, C., Kwon, Y., Rao, T., Wang, W., Sheng, C., Song, X., Deng, Y., Jimenez-Sainz, J., Lu, L., Jensen, R. B., Xiong, Y., Kupfer, G. M., Wiese, C., Greene, E. C., and Sung, P. (2017) BRCA1-BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 550, 360-365
26. Prado, F. (2018) Homologous Recombination: To Fork and Beyond. Genes (Basel) 9
27. Che, R., Zhang, J., Nepal, M., Han, B., and Fei, P. (2018) Multifaceted Fanconi Anemia Signaling. Trends Genet 34, 171-183
28. Branzei, D., and Foiani, M. (2010) Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11, 208-219
29. Petermann, E., and Helleday, T. (2010) Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11, 683-687
30. Huttner, D., and Ulrich, H. D. (2008) Cooperation of replication protein A with the ubiquitin ligase Rad18 in DNA damage bypass. Cell Cycle 7, 3629-3633
31. Tsuji, Y., Watanabe, K., Araki, K., Shinohara, M., Yamagata, Y., Tsurimoto, T., Hanaoka, F., Yamamura, K., Yamaizumi, M., and Tateishi, S. (2008) Recognition of forked and single-stranded DNA structures by human RAD18 complexed with RAD6B protein triggers its recruitment to stalled replication forks. Genes Cells 13, 343-354
32. Stelter, P., and Ulrich, H. D. (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191
33. Yang, W. (2014) An overview of Y-Family DNA polymerases and a case study of human DNA polymerase eta. Biochemistry 53, 2793-2803
34. Minca, E. C., and Kowalski, D. (2010) Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell 38, 649-661
35. Gao, Y., Mutter-Rottmayer, E., Zlatanou, A., Vaziri, C., and Yang, Y. (2017) Mechanisms of Post-Replication DNA Repair. Genes (Basel) 8
36. Bailly, V., Lamb, J., Sung, P., Prakash, S., and Prakash, L. (1994) Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 8, 811-820
37. Huang, A., Hibbert, R. G., de Jong, R. N., Das, D., Sixma, T. K., and Boelens, R. (2011) Symmetry and asymmetry of the RING-RING dimer of Rad18. J Mol Biol 410, 424-435
38. Ripley, B. M., Gildenberg, M. S., and Washington, M. T. (2020) Control of DNA Damage Bypass by Ubiquitylation of PCNA. Genes (Basel) 11
39. Hedglin, M., and Benkovic, S. J. (2015) Regulation of Rad6/Rad18 Activity During DNA Damage Tolerance. Annu Rev Biophys 44, 207-228
40. Watson, N. B., Nelson, E., Digman, M., Thornburg, J. A., Alphenaar, B. W., and McGregor, W. G. (2008) RAD18 and associated proteins are immobilized in nuclear foci in human cells entering S-phase with ultraviolet light-induced damage. Mutat Res 648, 23-31
41. Zou, S., Yang, J., Guo, J., Su, Y., He, C., Wu, J., Yu, L., Ding, W. Q., and Zhou, J. (2018) RAD18 promotes the migration and invasion of esophageal squamous cell cancer via the JNK-MMPs pathway. Cancer Lett 417, 65-74
42. Wong, R. P., Aguissa-Toure, A. H., Wani, A. A., Khosravi, S., Martinka, M., Martinka, M., and Li, G. (2012) Elevated expression of Rad18 regulates melanoma cell proliferation. Pigment Cell Melanoma Res 25, 213-218
43. Li, P., He, C., Gao, A., Yan, X., Xia, X., Zhou, J., and Wu, J. (2020) RAD18 promotes colorectal cancer metastasis by activating the epithelialmesenchymal transition pathway. Oncol Rep 44, 213-223
44. Yan, X., Chen, J., Meng, Y., He, C., Zou, S., Li, P., Chen, M., Wu, J., Ding, W. Q., and Zhou, J. (2019) RAD18 may function as a predictor of response to preoperative concurrent chemoradiotherapy in patients with locally advanced rectal cancer through caspase-9-caspase-3-dependent apoptotic pathway. Cancer Med 8, 3094-3104
45. Buoninfante, O. A., Pilzecker, B., Aslam, M. A., Zavrakidis, I., van der Wiel, R., van de Ven, M., van den Berk, P. C. M., and Jacobs, H. (2018) Precision cancer therapy: profiting from tumor specific defects in the DNA damage tolerance system. Oncotarget 9, 18832-18843
46. Wu, B., Wang, H., Zhang, L., Sun, C., Li, H., Jiang, C., and Liu, X. (2019) High expression of RAD18 in glioma induces radiotherapy resistance via down-regulating P53 expression. Biomed Pharmacother 112, 108555
47. Yang, Y., Gao, Y., Zlatanou, A., Tateishi, S., Yurchenko, V., Rogozin, I. B., and Vaziri, C. (2018) Diverse roles of RAD18 and Y-family DNA polymerases in tumorigenesis. Cell Cycle 17, 833-843
48. Durando, M., Tateishi, S., and Vaziri, C. (2013) A non-catalytic role of DNA polymerase eta in recruiting Rad18 and promoting PCNA monoubiquitination at stalled replication forks. Nucleic Acids Res 41, 3079-3093
49. Lin, J. R., Zeman, M. K., Chen, J. Y., Yee, M. C., and Cimprich, K. A. (2011) SHPRH and HLTF act in a damage-specific manner to coordinate different forms of postreplication repair and prevent mutagenesis. Mol Cell 42, 237-249
50. Tripathi, K., Mani, C., Clark, D. W., and Palle, K. (2016) Rad18 is required for functional interactions between FANCD2, BRCA2, and Rad51 to repair DNA topoisomerase 1-poisons induced lesions and promote fork recovery. Oncotarget 7, 12537-12553
51. Tian, F., Sharma, S., Zou, J., Lin, S. Y., Wang, B., Rezvani, K., Wang, H., Parvin, J. D., Ludwig, T., Canman, C. E., and Zhang, D. (2013) BRCA1 promotes the ubiquitination of PCNA and recruitment of translesion polymerases in response to replication blockade. Proc Natl Acad Sci U S A 110, 13558-13563
52. Tateishi, S., Niwa, H., Miyazaki, J., Fujimoto, S., Inoue, H., and Yamaizumi, M. (2003) Enhanced genomic instability and defective postreplication repair in RAD18 knockout mouse embryonic stem cells. Mol Cell Biol 23, 474-481