| 研究生: |
王冠貿 Wang, Kuan-Mao |
|---|---|
| 論文名稱: |
上肢影響恢復平衡動作之生物力學分析 Biomechanical analysis of how upper limbs influence balance recovery |
| 指導教授: |
鄭匡佑
Cheng, Bruce |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 體育健康與休閒研究所 Institute of Physical Education, Health & Leisure Studies |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 29 |
| 中文關鍵詞: | 平衡恢復 、上肢擺動 、膝關節策略 、動作協調 |
| 外文關鍵詞: | balance recovery, arm swing, knee strategy |
| 相關次數: | 點閱:102 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
維持平衡是一項很重要且很基本的技巧,如何利用身體肢段維持平衡更是一個很重要的課題。過去的研究大多著重在下肢的探討,鮮少討論到上肢,由於進行平衡動作時上肢並非固定不動,故也應該一併被考慮。本研究目的為探討個體在受到擾動時,上肢擺動與否對恢復平衡所造成的影響。實驗對象為健康成年男性,分為上肢不固定組(arm swing, AS)和上肢固定組(arm constrained, AC),受試者站立於一塊測力板上進行平衡恢復動作,並收集動力學資料;運動學資料則利用動作捕捉系統取得。動作過程中不可使用跨步的方式來恢復平衡,腳尖不能離地但腳跟可以離地。實驗結果顯示,上肢不固定組恢復平衡的成功率較高、恢復平衡時間較短,代表恢復平衡過程中有上肢的參與的確可以使個體更容易更快速的恢復平衡,也可以讓個體處於可以進行下一項動作的狀態以避免受傷。雖然手臂對於降低地面反作用力的幫助並不明顯,但似乎可以有較好的平衡調節機制,所以即使在傾斜角度變大時地面反作用力並不會顯著增加。本研究定義動作過程中膝關節彎曲大於30度為膝關節策略,上肢固定組使用膝關節策略的比例很高,即沒有上肢參與時,膝蓋彎曲成為恢復平衡的主要方法之一。除此之外,經由實驗中觀察,個體間平衡動作的差異性很大,受試者所使用的平衡策略皆有差異。由本研究可以證實上肢對於恢復平衡動作是有幫助的。上肢僅為身體肢段其中的一部分,如何使身體各肢段之間產生更好的協調作用,需要透過訓練以及不斷地練習。
The ability to maintain balance is an important skill in daily life. Although participation of the arms has been reported in balance recovery, previous researches have focused extensively on lower limb strategies. The aim of this study was to investigate whether the arms could influence standing balance recovery with the hypothesis that enhanced performance could be achieved with unconstrained arm motions. Participates were released from three forward-lean angles and regained balance without moving the forefoot under arm swing (AS) and arm constrained (AC) conditions. Higher success rate and shorter recovery time were found in balance recovery with arm swing. Unlike the significant increases in ground reaction forces (GRF) between adjacent lean angles in AC, less (or no) significant differences between different lean angles in AS conditions implied the arms’ role in reducing GRF increase caused by the same external disturbances. Furthermore, greater lean angles increased difficulty in balance recovery, making the knee strategy (in addition to the existing ankle and hip strategies) more necessary and the influences of arms less significant. It was concluded that arm swing can indeed enhance standing balance recovery performances.
Allum, J. H., Carpenter, M. G., Honegger, F., Adkin, A. L., & Bloem, B. R. (2002). Age-dependent variations in the directional sensitivity of balance corrections and compensatory arm movements in man. J Physiol, 542(Pt 2), 643-663
Campbell, A. J., Borrie, M. J., & Spears, G. F. (1989). Risk factors for falls in a community-based prospective study of people 70 years and older. Journals of Gerontology, 44(4), M112-117
Cham, R., & Redfern, M. S. (2001). Lower extremity corrective reactions to slip events. J Biomech, 34(11), 1439-1445
Cumming, R. G., & Klineberg, R. J. (1994). Fall frequency and characteristics and the risk of hip fractures. J Am Geriatr Soc, 42(7), 774-778
Do, M. C., Breniere, Y., & Brenguier, P. (1982). A Biomechanical Study of Balance Recovery during the Fall Forward. J Biomech, 15(12), 933-939
Dyson, G. H. G. (1977). The mechanics of athletics (7th ed.). New York: Holmes & Meier Publishers.
Forner Cordero, A., Koopman, H. F. J. M., & van der Helm, F. C. T. (2003). Multiple-step strategies to recover from stumbling perturbations. Gait Posture, 18(1), 47-59
Gabell, A., Simons, M. A., & Nayak, U. S. L. (1985). Falls in the Healthy Elderly - Predisposing Causes. Ergonomics, 28(7), 965-975
Grabiner, M. D., Owings, T. M., & Pavol, M. J. (2005). Lower extremity strength plays only a small role in determining the maximum recoverable lean angle in older adults. J Gerontol A Biol Sci Med Sci, 60(11), 1447-1450
Hsiao-Wecksler, E. T. (2008). Biomechanical and age-related differences in balance recovery using the tether-release method. J Electromyogr Kinesiol, 18(2), 179-187
Hsiao-Wecksler, E. T., & Robinovitch, S. N. (2007). The effect of step length on young and elderly women's ability to recover balance. Clin Biomech (Bristol, Avon), 22(5), 574-580
Hsiao, E. T., & Robinovitch, S. N. (1999). Biomechanical influences on balance recovery by stepping. J Biomech, 32(10), 1099-1106
King, G. W., Luchies, C. W., Stylianou, A. P., Schiffman, J. M., & Thelen, D. G. (2005). Effects of step length on stepping responses used to arrest a forward fall. Gait Posture, 22(3), 219-224
Lockhart, T. E. (2008). An integrated approach towards identifying age-related mechanisms of slip initiated falls. J Electromyogr Kinesiol, 18(2), 205-217
Madigan, M. L., & Lloyd, E. M. (2005). Age and stepping limb performance differences during a single-step recovery from a forward fall. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 60(4), 481-485
Maki, B. E., McIlroy, W. E., & Fernie, G. R. (2003). Change-in-support reactions for balance recovery. IEEE Eng Med Biol Mag, 22(2), 20-26
Maki, B. E., McIlroy, W. E., & Perry, S. D. (1996). Influence of lateral destabilization on compensatory stepping responses. J Biomech, 29(3), 343-353
Marigold, D. S., Bethune, A. J., & Patla, A. E. (2003). Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. J Neurophysiol, 89(4), 1727-1737
McNitt-Gray, J. L. (1993). Kinetics of the lower extremities during drop landings from three heights. J Biomech, 26(9), 1037-1046
Misiaszek, J. E. (2003). Early activation of arm and leg muscles following pulls to the waist during walking. Experimental Brain Research, 151(3), 318-329
Nashner, L. M., Shupert, C. L., Horak, F. B., & Black, F. O. (1989). Organization of posture controls: an analysis of sensory and mechanical constraints. Prog Brain Res, 80, 411-418; discussion 395-417
Nijhuis, L. B. O., Bloem, B. R., Carpenter, M. G., & Allum, J. H. J. (2007). Incorporating voluntary knee flexion into nonanticipatory balance corrections. J Neurophysiol, 98(5), 3047-3059
Pai, Y. C., & Patton, J. (1997). Center of mass velocity-position predictions for balance control. J Biomech, 30(4), 347-354
Patla, A. E., Ishac, M. G., & Winter, D. A. (2002). Anticipatory control of center of mass and joint stability during voluntary arm movement from a standing posture: interplay between active and passive control. Experimental Brain Research, 143(3), 318-327
Pavol, M. J., Owings, T. M., Foley, K. T., & Grabiner, M. D. (1999). Gait characteristics as risk factors for falling from trips induced in older adults. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 54(11), M583-M590
Pijnappels, M., Bobbert, M. F., & van Dieen, J. H. (2004). Contribution of the support limb in control of angular momentum after tripping. J Biomech, 37(12), 1811-1818
Pijnappels, M., Kingma, I., Wezenberg, D., Reurink, G., & van Dieen, J. H. (2010). Armed against falls: the contribution of arm movements to balance recovery after tripping. Experimental Brain Research, 201(4), 689-699
Prudham, D., & Evans, J. G. (1981). Factors associated with falls in the elderly: a community study. Age Ageing, 10(3), 141-146
Rietdyk, S., Patla, A. E., Winter, D. A., Ishac, M. G., & Little, C. E. (1999). NACOB presentation CSB New Investigator Award. Balance recovery from medio-lateral perturbations of the upper body during standing. North American Congress on Biomechanics. J Biomech, 32(11), 1149-1158
Roos, P. E., McGuigan, M. P., Kerwin, D. G., & Trewartha, G. (2008). The role of arm movement in early trip recovery in younger and older adults. Gait Posture, 27(2), 352-356
Runge, C. F., Shupert, C. L., Horak, F. B., & Zajac, F. E. (1999). Ankle and hip postural strategies defined by joint torques. Gait Posture, 10(2), 161-170
Schillings, A. M., Van Wezel, B. M. H., Mulder, T., & Duysens, J. (2000). Muscular responses and movement strategies during stumbling over obstacles. J Neurophysiol, 83(4), 2093-2102
Smeesters, C., Hayes, W. C., & McMahon, T. A. (2001). Disturbance type and gait speed affect fall direction and impact location. J Biomech, 34(3), 309-317
Thelen, D. G., Schultz, A. B., Alexander, N. B., & AshtonMiller, J. A. (1996). Effects of age on rapid ankle torque development. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 51(5), M226-M232
Thelen, D. G., Wojcik, L. A., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. (1997). Age differences in using a rapid step to regain balance during a forward fall. J Gerontol A Biol Sci Med Sci, 52(1), M8-13
Tinetti, M. E., Doucette, J. T., & Claus, E. B. (1995). The Contribution of Predisposing and Situational Risk-Factors to Serious Fall Injuries. J Am Geriatr Soc, 43(11), 1207-1213
Troy, K. L., & Grabiner, M. D. (2006). Recovery responses to surrogate slipping tasks differ from responses to actual slips. Gait Posture, 24(4), 441-447
Welch, T. D., & Ting, L. H. (2009). A feedback model explains the differential scaling of human postural responses to perturbation acceleration and velocity. J Neurophysiol, 101(6), 3294-3309
Wojcik, L. A., Thelen, D. G., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. (1999a). Age and gender differences in single-step recovery from a forward fall. J Gerontol A Biol Sci Med Sci, 54(1), M44-50
Wojcik, L. A., Thelen, D. G., Schultz, A. B., Ashton-Miller, J. A., & Alexander, N. B. (1999b). Age and gender differences in single-step recovery from a forward fall. J Gerontol A Biol Sci Med Sci, 54(1), M44-50
Zadpoor, A. A., & Nikooyan, A. A. (2011). The relationship between lower-extremity stress fractures and the ground reaction force: A systematic review. Clinical Biomechanics, 26(1), 23-28