簡易檢索 / 詳目顯示

研究生: 楊榮澤
Yang, Rung-Je
論文名稱: 20至100 nm α-Al2O3晶粒的熱力學特性
指導教授: 顏富士
Yen, Fu-Su
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 49
中文關鍵詞: 氧化鋁熱力學
外文關鍵詞: alumina, nano-sized
相關次數: 點閱:129下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究觀察q-到a-Al2O3相轉換過程中未完成相轉換的a-Al2O3還原成q-Al2O3的現象。q-到a-Al2O3的相轉換過程中會出現相轉換臨界晶徑(dcq~22 nm,dca~17 nm)及基礎晶徑(dp~50 nm)。後者係經由具臨界晶徑的a-Al2O3核晶聚合成長而得到的,相轉換在晶徑超過50 nm後才開始進入完成階段。以熱力學觀點來看,a-Al2O3晶粒在未完成相轉換(△Gr>0)前,或晶徑介於20~50 nm之間都屬不穩定的狀態,應可還原為q-Al2O3。
    本研究利用商用q-Al2O3粉為原料,先於1200℃持溫60秒後,q→a-Al2O3相變發生之a-生成量達30 wt%,再將樣品快速降溫至700℃、800℃、900℃及1000℃等溫度持溫,觀察在1200℃存在之a-及q- Al2O3晶粒的相變化現象。結果發現:粉末系統中不論是已進入相變過程但尚未完成相轉換的a-Al2O3或是離開1200℃後才進入相變之q-Al2O3所生成的a-晶粒,如屬未完成相轉換的a-Al2O3都會還原為q-Al2O3。
    經過還原之q-晶粒可大至100 nm,並有雙晶結構(twin structure)出現。本研究亦同時指出還原為q-Al2O3之熱處理溫度需要在800℃以上,才可提供足夠的驅動力。

    The phenomenon of a-Al2O3 crystallites of unfinished phase transformation would revert to q-Al2O3 was investigated in this study. The investigation was based on that the phase transformation of q- to a-Al2O3 is performed through nucleation and growth mechanism in which the critical size (dcq~22 nm, dca~17 nm) and primary size (dp =~50 nm) phenomena occur. And thus a-Al2O3 crystallites with crystallite sizes range from 20 to 50 nm or larger may as metastable and eventually can revert to q-phase.
    Commercial q-Al2O3 powders pre-treated with ball milling were used as raw materials. The q-Al2O3 powder was calcined at 1200℃ for 60s, and the amount of a-formation induced by phase transformation was about 30 wt%. Then, the calcined samples were annealed at 700℃, 800℃, 900℃ and 1000℃ for various durations to check the reversion of a- to q-Al2O3, presumably the a-Al2O3 was metastable. It was found that there can be two kinds of metastable a-Al2O3 crystallites derived subsequently in the powder system: prior to and after annealed at 700-1000℃. No matter which one of them, if the phase transformation was not accomplished, it should revert to q-Al2O3.
    It was found that some q-Al2O3 crystallites reverted from a-Al2O3 show sizes as large as 100 nm and have twin structure. It was also found that the thermal treatments at temperature >800℃ is required for providing sufficient driving force for performance of the reversion of a→q-Al2O3 in this study.

    摘要…………………………………………………………………………Ⅰ 表目錄……………………………………………………………………………Ⅵ 圖目錄……………………………………………………………………………Ⅶ 附錄………………………………………………………………………………Ⅸ 第一章 緒論…………………………………………………………………1 1.1 前言………………………………………………………………1 1.2 研究動機與目的…………………………………………………2 第二章 理論基礎與前人研究………………………………………………5 2.1 q-到a-Al2O3相轉換………………………………………………5 2.1.1 相轉換的熱差與維差行為特性……………………………………5 2.1.2 a-Al2O3的存在對q→a-Al2O3相轉換的影響……………………7 2.2 以熱力學觀點看q-到a-Al2O3相轉換……………………………8 2.3 由臨界晶徑控制的相轉換………………………………………………9 2.4 雙晶………………………………………………………………………11 2.4.1 雙晶的分類………………………………………………………11 2.4.2 應力造成的雙晶結構……………………………………………11 第三章 研究方法及步驟…………………………………………………………13 3.1 實驗原料………………………………………………………………13 3.2 實驗步驟…………………………………………………………………13 3.3 特性分析…………………………………………………………………14 3.3.1 粉末結晶相分析…………………………………………………14 3.3.2 熱差分析…………………………………………………………14 3.3.3 晶徑及粒徑分析…………………………………………………14 3.3.4 a-生成量定量分析………………………………………………17 3.3.5 顯微影像及結構分析…………………………………………17 第四章 結果與討論………………………………………………………………19 4.1 起始原料……..………………………………………………………19 4.1.1 起始原料的結晶相分析…………………………………………19 4.1.2 酒精研磨的效應…………………………………………………19 4.1.3 1200℃熱處理粉末的基本性質………………………………19 4.2 a→q-Al2O3的還原試驗……………………………………………22 4.2.1 a-生成量變化…………………………………………………22 4.2.2 q-及a-晶徑的變化……………………………………………23 4.3 a→q-Al2O3相變特性分析………………………………………23 4.4 持溫溫度與a→q-Al2O3還原關係……………………………………28 4.5 a→q-Al2O3的觀察……………………………………………………28 4.5.1 1200℃/60s已出現的a-Al2O3……………………………………28 4.5.2 離開1200℃/60s後才生成的a-Al2O3……………………………28 4.5.3 240秒後q→a-Al2O3相變觀察…………………………………29 4.6 還原的q-Al2O3晶粒……………………………………………………29 4.7 還原所需時間……………………………………………………………30 4.8 綜合討論…………………………………………………………………30 第五章 結論………………………………………………………………………35 參考文獻……………………………………………………………………... ……36 Appendix Ⅰ……………………………………………………………………….40 Appendix Ⅱ………………………………………………………………………41 Appendix Ⅲ………………………………………………………………………49

    1.T. G. Peason, The Chemical Background of the Aluminum Industry, Monograph of the Royal Institute of Chemistry, London, 1995.
    2.R. W. Siegel, S. Ramasamy, H. Hahn, R. Gronsky, Z. Q. Li, and T. Lu, “Synthesis, Characterization, and Properties of Nanophase TiO2,” J. Mater. Res., 3 [6] 1367-1372 (1988).
    3.G. L. Messing and M. Kumagai, “Low-Temperature Sintering of a-Alumina Seeded Boehmite Gels,” Am. Ceram. Soc. Bull., 73 [10] 88-91 (1994).
    4.P. A. Badkar and J. E. Bailey, “The Mechanism of Simultaneous Sintering and Phase Transformation in Alumina,” J. Mater. Sci., 11 1794-1806 (1976).
    5.J. L. McArdle and G. L. Messing, “Seeding with g-Alumina for Transformation and Microstructure Control in Boehmite-Derived a-Alumina,” J. Am. Ceram. Soc., 69 C98-101 (1986).
    6.T. G. Nieh, C. M. McNally, and J. Wadsworth, “Superplasticity in Intermatallic Alloys and Ceramics” JOM, 41 31-35 (1989).
    7.H. L. Wen and F. S. Yen, “Growth Characteristics of Boehmite-Derived Ultrafine theta and alpha-Alumina Particles During Phase Transformation,” J. Cryst. Growth, 208 696-708 (2000).
    8.P. L. Chang, F. S. Yen, K. C. Cheng and H. L. Wen, “Examination on the Critical and Primary Crystallite Sizes During q- to a-Phase Transformation on Ultrafine Alumina Powders,” Nano Letters, 5 253-261 (2001).
    9.溫惠玲,由Boehmite製得之氧化鋁粉末的q→a-Al2O3相轉換,國立成功大學資源工程研究所,博士論文,中華民國89年1月。
    10.B. D. Cullity, Elements of X-ray Diffraction, Addison-Wesley Publishing Company, Inc. 2nd Ed., London, 1978.
    11.I. I. M. Tijburg, H. D. Bruin, P. A. Elberse, and W. Geus, “Sintering of Pseudo-boehmite and a-Al2O3,” J. Mater. Sci., 26 5945-5949 (1991).
    12.F. W. Dynys and J. W. Holloran, “Alpha Alumina Formation in Alum Derived Gamma Alumina,” J. Am. Ceram. Soc., 65 [9] 442-448 (1982).
    13.鄭功杰,氧化鋁微粉之基礎晶徑觀察,國立成功大學資源工程研究所,碩士論文,中華民國89年6月。
    14.M. W. Chase, Jr., C. A. Davies, J. R. Downey, Jr. Fruip, R. R. McDonalod, and A. N. Syverud, JANAF Thermodynamical Tables, 3rd Ed., Am. Chem. Soc., Washington, DC.
    15.汪明儀,奈米級氧化鋁粉中q→a-Al2O3相轉換之應力效應,國立成功大學資源工程研究所,碩士論文,中華民國90年6月。
    16.F. S. Yen, J. L. Chang, and P. C. Yu, “Relationships between DTA and DIL Characteristics of Nano-Sized Alumina Powders During q- to a-Phase Transformation,” J. Cryst. Growth, 246 90-98 (2002).
    17.M. Kumagai and G. L. Messing, “Controlled Transformation of a Boehmite Sol-Gel by a–Alumina Seeding,” J. Am. Ceram. Soc., 68 [9] 500-505 (1985).
    18.G. L. Messing and M. Kumagai, “Low-Temperature Sintering of a-Alumina-Seeded Boehmite Gel,” J. Am. Ceram. Soc., 73 [10] 88-92 (1994).
    19.F. S. Yen, H. S. Lo, H. L. Wen, and R. J. Yang, “q- to a-Phase Transformation Subsystem Induced by a-Al2O3-Seeding in Boehmite-Derived Nano-Sized Alumina Powders,” J. Cryst. Growth, 249 283-293 (2003).
    20.許宇嬋,微粒q與a-Al2O3混合粉末的熱反應,國立成功大學資源工程研究所,碩士論文,中華民國90年7月。
    21.張俊龍,奈米級氧化鋁粉末q至a的相轉換活化能研究,國立成功大學資源工程研究所,碩士論文,中華民國91年6月。
    22.R. C. Garive, “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem., 69 [4] 1238-1243 (1965).
    23.R. C. Garive, “Stabilization of the Tetragonal Structure in Zirconia Microcrystals,” J. Phys. Chem., 82 [2] 218-224 (1978).
    24.R. C. Garvie and M. F. Goss, “Intrinsic Size Dependence of the Phase Transformation Temperature on Zirconia Microcrystals,” J. Mater. Sci., 21 1253-1257 (1985).
    25.W. Z. Zhu, “Grain Size Dependence of the Transformation Temperature of Tetragonal to Monoclinic Phase in ZrO2 (Y2O3) Ceramics,” Ceram. Inter., 22 389-395 (1996).
    26.陳智成,氧化鋁-氧化鋯陶瓷複合材料之製備與性質研究,國立成功大學礦冶及材料科學研究所,博士論文,中華民國83年6月。
    27.A. Suresh and M. J. Rawn, “Crystallite and Grain-Size-Dependent Phase Transformation in Yttria-Doped Zirconia,” J. Am. Ceram. Soc., 86 [2] 360-362 (2003).
    28.F. S. Yen, C. T. Chang, and Y. H. Chang, “Characterization of Barium Titanium Oxalaye Tetrahydrate,” J. Am. Ceram. Soc., 73 3422 (1990).
    29.K. Saegusa, W. E. Rhine, and H. K. Bowen, “Effect of Composition and Size of Crystallite on Crystal Phase in Lead Barium Titanate,” J. Am. Ceram. Soc., 76 1505 (1993).
    30.K. Uchino, E. Sadanaga, and T. Hirose, “Dependence of the Crystal Structure on the Particle Size in Barium Titanate,” J. Am. Ceram. Soc., 72 1555-1558 (1989).
    31.向性一,鈦酸鋇粉末鐵電區與介電性質之研究,國立成功大學礦冶及材料科學研究所,博士論文,中華民國84年7月。
    32.M. H. Frey and D. A. Payne, “Grain-Size Effect on Structure and Phase Transformation for Barium Titanate,” Phys. Rev. B, 54 [5] 3158-3168 (1996).
    33.P. Ayyub, M. Multani, M. Barma, V. R. Palkar, and R. Vijayaraghavan, “Size-Induced Structural Phase Transitions and Hyperfine Properties of Microcrystalline Fe2O3,” J. Phys. C: Solid State Phys., 21 2229-2245 (1988).

    34.M. S. Multani and P. Ayyub, “Size and Pressure Driven Phase Transitions,” Condensed Matter News, 1 [1] 25-27 (1991).
    35.A. A. Gribb and J. F. Banfield, “Particle Size Effects on Transformation Kinetics and Phase Stability in Nanocrystalline TiO2,” Am. Miner., 82 717-728 (1997).
    36.H. Zhang and J. F. Banfield, “Thermodynamic Analysis of Phase Stability of Nanocrystalline Titania,” J. Mater. Chem., 8 [9] 2073-2076 (1998).
    37.H. Zhang and J. F. Banfield, “New Kinetic Model for the Nanocrystalline Anatase-to-Rutile Transformation Revealing Rate Dependence on Number of Particles,” Am. Miner., 84 528-535 (1999).
    38.H. Zhang and J. F. Banfield, “Phase transformation of Nanocrystalline Anatase-to-Rutile via Combined Interface and Surface Nucleation,” J. Mater. Res., 15 [2] 437-448 (2000).
    39.M. J. Buerger, “The Genesis of Twin Crystals,” Am. Mineral., 30, 469-482 cited in F. D. Bloss, Crystallography and Crystal Chemistry: An Introduction, Holt, Rinehart and Winston, Inc., New York (1971).
    40.C. Klein and C. S. Hurlbut, Jr., Manual of Mineralogy, John Wiley&Sons, Inc., 21st Ed, New York, 1993.
    41.N. K. Simha, “Twin and Habit Plane Microstructures Due to The Tetragonal to Monoclinic Transformation of Zirconia,” J. Mech. Phys. Solids, 45 [2] 261-292 (1997).
    42.G. Arlt, “Twinning in Ferroelectric and Ferroelastic Ceramics: Stress Relief,” J. Mater. Sci., 25 2655-2666 (1990).
    43.Y. G. Wang, P. M. Bronsveld, J. Th. M. De Hosson, B. Djuricic, D. McGarry, and S. Pickering, “Twinning in q Alumina Investigated with High Resolution Transmission Electron Microscopy,” J. Europ. Ceram. Soc., 18 299-304 (1998).
    44.D. E. Niesz and R. B. Bnnett, “Structure and Properties of Agglomerates,” 61-73, in Ceramic Processing before Firing, Edited by G. Y. Onoda. Jr. and L. L. Hench, Wiley, New York, 1978.
    45.F. F. Lange, “Sinterability of Agglomerated Powders,” J. Am. Ceram. Soc., 67 [2] 83-89 (1984).
    46.M. Kitayama and J. A. Pask, “Formation and Control of Agglomerates in Alumina Powder,” J. Am. Ceram. Soc., 79 [8] 2003-2011 (1996).
    47.J. G. Li and X. Sun, “Synthesis and Sintering Behavior of a Nanocrystalline a–Alumina Powder,” Acta Mater., 48 3103-3112 (2000).

    下載圖示 校內:立即公開
    校外:2003-07-29公開
    QR CODE