簡易檢索 / 詳目顯示

研究生: 吳世偉
Wu, Shih-Wei
論文名稱: 大腦組織磁化率定量在磁場不均勻區域之最佳化
Optimization of Quantitative Magnetic Susceptibility Mapping in Brain Regions with Field Inhomogeneity
指導教授: 吳明龍
Wu, Ming-Long
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 55
中文關鍵詞: 組織磁化率磁振造影訊號喪失echo shift
外文關鍵詞: tissue susceptibility, MRI, signal loss, echo shift
相關次數: 點閱:111下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在核磁共振造影中,有些大腦的區域會因為磁場不均勻而造成訊號喪失,其中尤其在鼻腔附近的區域。因此,很多方法提出去補回訊號喪失來提升影像品質。
    在我們的研究中提出一個方法來補回訊號喪失,且我們方法的結果可以有效地補回訊號喪失。首先,我們利用k-space energy spectrum analysis (KESA) 來計算echo shift並且作為我們最佳化演算法的輸入,接著跑完整個最佳化流程的結果會被我們作為加上z-方向梯度磁場(z-shim)的依據。另外,我們還會去探討當訊號喪失時以及補回訊號時對於QSM (Quantitative Susceptibility Map)的影響。因近年來,QSM對於神經疾病的診斷具有極大的潛力。除此之外,我們提出的是一個省時的方法,只需要約莫90秒就可以將整個最佳化流程跑完。總體來說,我們提出的方法不只可以有效的補回訊號喪失提升影像品質,並且因所需執行時間很短,也擁有很大的潛力應用於臨床上。

    In MR imaging, some regions of the brain are affected by the field inhomogeneity, especially around the air-filled cavities, e.g. nasal cavity, which can lead to the result of signal loss. Therefore, many methods are proposed to compensate for the artifacts from signal loss and achieve the better quality of MR images.
    In this study, a novel method to compensate for the artifact affected by signal loss is proposed and the result of our method effectively corrected signal loss. First, we calculate the echo shifts by the k-space energy spectrum analysis (KESA) for our optimization procedure. Then, the result of the optimization procedure is implemented by applying additional gradients along z-direction (i.e. z-shim). Moreover, we investigate the influence of signal loss and the result of the signal recovery on Quantitative Susceptibility Mapping (QSM), which potentially plays an important role of neuronal disease in recent studies. In addition, the algorithm we proposed is efficient, only takes around 90s to compute the entire processing on line. Therefore, it is concluded that the new method can effectively restore susceptibility signal loss and improve the quality of QSM with short computation time that provides a great potential for clinical applications.

    中文摘要 i Abstract ii 誌謝 iii 1 Introduction 1 2 Optimization of k-space coverage in Quantitative Susceptibility Mapping data 3 2.1 K-space Energy Spectrum Analysis and echo-shifting 5 2.2 Optimization of the K-space coverage 12 2.2.1 Estimated echo shift from pre-scan data 12 2.2.2 Conversion of echo shift 13 2.2.3 Thresholding for the coverage of K-space 14 2.2.4 The coverage of lower K-space information 15 2.3 Quantitative Susceptibility Mapping (QSM) 17 2.3.1 Estimate field distribution 17 2.3.2 Magnetic field calculation by dipole model 18 2.3.3 Background field removal 19 2.3.4 QSM reconstruction 20 3 Experiment design 22 3.1 Numerical simulation 22 3.2 Human subject study 24 3.2.1 Large Kz coverage simulation experiment 24 3.2.2 On-Line Z-shim optimization experiment 25 4 Results 26 4.1 Numerical simulation 26 4.2 Accuracy of estimated echo shift from pre-scan data 29 4.3 Human subject study 31 4.3.1 Large Kz coverage simulation experiment 31 4.3.2 On-Line z-shim optimization experiment 42 5 Discussion 48 5.1 Signal recovery with optimization 48 5.2 Optimal λ determination 49 5.3 Flow-compensation 50 5.4 Thresholding based on echo shift histogram 51 5.5 Human subject experiment 51 5.6 Intra-voxel dephasing and echo-shifting 52 5.7 Field inhomogeneity 52 5.8 Future work 52 References 54 List of Tables Large Kz coverage simulation experiment Table 4 - 1.The values of ROI1 (Caudate Nucleus) 37 Table 4 - 2.The values of ROI2 (Globus Pallidus) 37 Table 4 - 3.The values of ROI3 (Putamen) 38 Table 4 - 4.The values of ROI4 (Red Nucleus) 38 Table 4 - 5.The values of ROI5 (Substantia Nigra) 39 Table 4 - 6.The RMSE values of ROI1 (Caudate Nucleus) 40 Table 4 - 7.The RMSE values of ROI2 (Globus Pallidus) 40 Table 4 - 8.The RMSE values of ROI3 (Putamen) 40 Table 4 - 9.The RMSE values of ROI4 (Red Nucleus) 40 Table 4 - 10.The RMSE values of ROI5 (Substantia Nigra) 41 On-Line Z-shim Optimization Experiment Table 4 - 11.The values of ROI1 (Caudate Nucleus) 46 Table 4 - 12.The values of ROI2 (Globus Pallidus) 46 Table 4 - 13.The values of ROI3 (Putamen) 46 Table 4 - 14.The values of ROI4 (Red Nucleus) 47 Table 4 - 15.The values of ROI5 (Substantia Nigra) 47 List of Figures Figure 2 - 1.The flow chart of optimization for the k-space coverage. 3 Figure 2 - 2.The QSM procedure. 3 Figure 2 - 3.3D uni-polar multi-echo gradient echo sequence. 4 Figure 2 - 4.The schematic view for effect of echo-shifting. 5 Figure 2 - 5.The signal loss in magnitude image 6 Figure 2 - 6.The flow chart of KESA implementation 7 Figure 2 - 7.The schematic view of pulse sequence and sampling point in k-space 11 Figure 2 - 8.The schematic diagram of conversion echo shift 13 Figure 2 - 9.The flow chart of thresholding and k-space coverage of lower frequency info 14 Figure 2 - 10.The achievement of adding z-shim gradient 16 Figure 3 - 1.Numerical phantom simulation 22 Figure 3 - 2.The effect of extracting k-space from high resolution data 24 Figure 3 - 3.The flow chart of implementation for on-line z-shim optimization 25 Figure 4 - 1.The result of numerical phantom simulation (1) 27 Figure 4 - 2.The result of numerical phantom simulation (2) 28 Figure 4 - 3.The result of accuracy test of echo shift 30 Figure 4 - 4.The result of large kz coverage simulation (1) 34 Figure 4 - 5.The result of high kz coverage simulation (2) 35 Figure 4 - 6.The result of high kz coverage simulation (3) 36 Figure 4 - 7.The result of on-line z-shim optimization experiment (1) 43 Figure 4 - 8.The result of on-line z-shim optimization experiment (2) 44 Figure 4 - 9.The result of on-line z-shim optimization experiment (3) 45

    1. Alegre, M. and M. Valencia, Oscillatory activity in the human basal ganglia: more than just beta, more than just Parkinson's disease. Exp Neurol, 2013. 248: p. 183-6.
    2. Pyatigorskaya, N., et al., A review of the use of magnetic resonance imaging in Parkinson's disease. 2013.
    3. Liu, T., et al., Cerebral Microbleeds : Burden Assessment by Using Quantitative Susceptibility Mapping. 2012.
    4. Langkammer, C., et al., Quantitative Susceptibility Mapping in Multiple Sclerosis. 2013.
    5. Kuroda, S., et al., Incidence, locations, and longitudinal course of silent microbleeds in moyamoya disease: a prospective T2*-weighted MRI study. Stroke, 2013. 44(2): p. 516-8.
    6. Glatz, A., et al., Characterization of multifocal T2*-weighted MRI hypointensities in the basal ganglia of elderly, community-dwelling subjects. Neuroimage, 2013. 82: p. 470-80.
    7. Haacke, E.M., et al., Susceptibility weighted imaging (SWI). Magn Reson Med, 2004. 52(3): p. 612-8.
    8. Haacke, E.M., et al., Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol, 2009. 30(1): p. 19-30.
    9. Mittal, S., et al., Susceptibility-weighted imaging: technical aspects and clinical applications, part 2. AJNR Am J Neuroradiol, 2009. 30(2): p. 232-52.
    10. Poynton*, C.B., et al., Quantitative Susceptibility Mapping by Inversion of a Perturbation Field Model: Correlation With Brain Iron in Normal Aging. 2015.
    11. Deistung, A., et al., Toward in vivo histology: a comparison of quantitative susceptibility mapping (QSM) with magnitude-, phase-, and R2*-imaging at ultra-high magnetic field strength. Neuroimage, 2013. 65: p. 299-314.
    12. Liu, T., et al., Calculation of susceptibility through multiple orientation sampling (COSMOS): a method for conditioning the inverse problem from measured magnetic field map to susceptibility source image in MRI. Magn Reson Med, 2009. 61(1): p. 196-204.
    13. Liu, T., et al., Morphology enabled dipole inversion (MEDI) from a single-angle acquisition: comparison with COSMOS in human brain imaging. Magn Reson Med, 2011. 66(3): p. 777-83.
    14. de Rochefort, L., et al., Quantitative susceptibility map reconstruction from MR phase data using bayesian regularization: validation and application to brain imaging. Magn Reson Med, 2010. 63(1): p. 194-206.
    15. Volz, S., et al., Reduction of susceptibility-induced signal losses in multi-gradient-echo images: application to improved visualization of the subthalamic nucleus. Neuroimage, 2009. 45(4): p. 1135-43.
    16. Oh, S.S., et al., Improved susceptibility weighted imaging method using multi-echo acquisition. Magn Reson Med, 2014. 72(2): p. 452-8.
    17. Chen, N.K., K. Oshio, and L.P. Panych, Application of k-space energy spectrum analysis to susceptibility field mapping and distortion correction in gradient-echo EPI. Neuroimage, 2006. 31(2): p. 609-22.
    18. Chen, N.K., K. Oshio, and L.P. Panych, Improved image reconstruction for partial Fourier gradient-echo echo-planar imaging (EPI). Magn Reson Med, 2008. 59(4): p. 916-24.
    19. Cuppen, J.J.M., Magnetic resonance fast Fourier imaging. Medical Physics, 1986. 13(2): p. 248.
    20. Glover, G.H., 3D z-Shim Method for Reduction of Susceptibility Effects in BOLD fMRI. 1999.
    21. Hammond, K.E., et al., Development of a robust method for generating 7.0 T multichannel phase images of the brain with application to normal volunteers and patients with neurological diseases. Neuroimage, 2008. 39(4): p. 1682-92.
    22. Cusack, R. and N. Papadakis, New Robust 3-D Phase Unwrapping Algorithms: Application to Magnetic Field Mapping and Undistorting Echoplanar Images. NeuroImage, 2002. 16(3): p. 754-764.
    23. Gilbert, G., et al., Quantitative comparison between a multiecho sequence and a single-echo sequence for susceptibility-weighted phase imaging. Magn Reson Imaging, 2012. 30(5): p. 722-30.
    24. Bilgic, B., et al., Fast image reconstruction with L2-regularization. J Magn Reson Imaging, 2014. 40(1): p. 181-91.
    25. Liu, T., et al., Accuracy of the Morphology Enabled Dipole Inversion (MEDI) Algorithm for Quantitative Susceptibility Mapping in MRI. 2012.
    26. Schweser, F., et al., Quantitative imaging of intrinsic magnetic tissue properties using MRI signal phase: an approach to in vivo brain iron metabolism? Neuroimage, 2011. 54(4): p. 2789-807.
    27. Liu, T., et al., A novel background field removal method for MRI using projection onto dipole fields (PDF). NMR Biomed, 2011. 24(9): p. 1129-36.
    28. Lin, P.Y., T.C. Chao, and M.L. Wu, Quantitative susceptibility mapping of human brain at 3T: a multisite reproducibility study. AJNR Am J Neuroradiol, 2015. 36(3): p. 467-74.
    29. Kressler, B., et al., Nonlinear Regularization for Per Voxel Estimation of Magnetic Susceptibility Distributions From MRI Field Maps. 2010.
    30. Chen, W., et al., Quantitative Susceptibility Mapping of Multiple Sclerosis Lesions at Various Ages. 2014.
    31. He, N., et al., Region-specific disturbed iron distribution in early idiopathic Parkinson's disease measured by quantitative susceptibility mapping. Hum Brain Mapp, 2015. 36(11): p. 4407-20.
    32. Sun, H., et al., Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter. Neuroimage, 2015. 105: p. 486-92.
    33. Nam, Y., D. Han, and D.H. Kim, Single-scan R(2)(*) measurement with macroscopic field inhomogeneity correction. Neuroimage, 2012. 63(4): p. 1790-9.
    34. Wild, J.M., W.R. Martin, and P.S. Allen, Multiple gradient echo sequence optimized for rapid, single-scan mapping of R(2)(*) at high B0. Magn Reson Med, 2002. 48(5): p. 867-76.
    35. Deistung, A., et al., Quantitative susceptibility mapping differentiates between blood depositions and calcifications in patients with glioblastoma. PLoS One, 2013. 8(3): p. e57924.
    36. Hoesen, G.W.V., J. Parvizi, and C.-C. Chu, Orbitofrontal Cortex Pathology in Alzheimer's Disease. 2000.
    37. Neilson, J., et al., Gelastic seizures with dancing arising from the anterior prefrontal cortex. Epileptic Disord, 2014. 16(2): p. 233-7.

    無法下載圖示 校內:2019-02-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE