| 研究生: |
蕭逸旻 Hsiao, Yi-Min |
|---|---|
| 論文名稱: |
定量核蛋白質體學分析血管內皮生長因子C誘導A549細胞增生機制 Quantitative Analysis of Nuclear Proteome Reveals Action Mechanisms of VEGF-C on Cell Proliferation in A549 Cells |
| 指導教授: |
蔡美玲
Tsai, Mei-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生理學研究所 Department of Physiology |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 97 |
| 相關次數: | 點閱:43 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
腫瘤細胞產生VEGF-C並活化其受器VEGFR3誘導淋巴管增生。但其受器也在許多惡性腫瘤細胞上被發現(例如A549)。至今發現VEGF-C活化VEGFR3藉由活化下游p38/MAPK路徑促使細胞移動。然而,VEGF-C如何透過VEGFR3促使細胞增生之機制還不清楚。由我們的初步實驗結果發現,加入150 ng/ml的VEGF-C促使增加A549細胞數目。基於此結果,本篇研究目的是釐清VEGF-C如何透過VEGFR3及其下游機制促使腫瘤細胞增生。利用生化、功能及定量蛋白質體分析其可能之機制。藉由測定Akt磷酸化程度並且排除VEGF-C會誘導細胞存活之可能性;同時藉由流式細胞儀、螢光染色及西方墨點法偵測細胞增生,由結果得知VEGF-C促使細胞週期由Sub G0進入S時期、增加BrdU+細胞數目及增加Rb磷酸化,證實VEGF-C會促使細胞周期進行。最後藉由定量核蛋白質分析,發現42個蛋白質可能參與VEGF-C調控之細胞週期進行。例如,VEGF-C促使cell cycle and apoptosis regulatory protein 1 (CARP-1)和 histone H2A and H2B 表現量降低、增加 histone H1、catenin delta-1、serine/ threonine-protein kinase 4及ADP-ribosylation factor-like protein 2表現. 兩種VEGFR3抑制劑(Cpd. 1250及VEGFR3/Fc) 逆轉VEGF-C降低CARP-1表現、增加BrdU+細胞及減少細胞凋亡期之細胞數目. Cpd. 1250 抑制細胞增生,但單獨處理會增加Akt磷酸化及Ebp-1表現進而促使細胞存活。由蛋白質體及生化分析結果得知,高濃度的VEGF-C處理會藉由調控CARP-1/Rb活化路徑及histone調節染色體結構進而加速細胞週期由G0進入S期。不像VEGFR3/Fc之反應,Cpd. 1250是會結合到多重目標的抑制劑除了抑制藉由活化VEGFR3之細胞增生,同時增加非VEGFR3下游Akt磷酸化路徑及Ebp-1表現,進而促進A549細胞存活。總結來說,VEGFR3抑制劑(Cpd. 1250和VEGFR3/Fc)可能是可用於對於晚期惡性腫瘤細胞增生及轉移一種好的治療方式,同時並未具有細胞毒性。
Vascular endothelial growth factor-C (VEGF-C) which induces lymphangiogenesis through VEGF receptor 3 (VEGFR3) can be produced from tumor cells. In addition, VEGFR3 is also found in various tumor cells (such as A549 cells). Up to date, it is known that activation of VEGFR3 by VEGF-C induced cell migration of A549 through a p38/MAPK pathway. However, it is not clear whether VEGF-C induced tumor cell proliferation. Since our preliminary data showed the increase of cell counts by VEGFC at 150 ng/ml, the purpose of this study was to explore the action mechanism of VEGFC on cell proliferation by combination of biochemical, functional and quantitative proteomic assays. To exclude the possibility that the increase of cell counts by VEGF-C was due to the increase of cell survival, the effect of VEGF-C on Akt phosphorylation was further examined. FAScan analysis, immunofluorescent analysis, and western blotting assay showed VEGF-C-induced increases in cell population at G1/S phase, BrdU-positive cells and Rb phosporylation. The data confirmed the induction of cell cycle shift from G0 to G1 phase by VEGF-C. Finally, subcellular proteomic analysis coupled with quantitative technology revealed about 42 nuclear proteins which might be involved in VEGF-C-induced shift in cell cycle. For example, cell cycle and apoptosis regulatory protein 1 (CARP-1), histone H2A and H2B were decreased by VEGF-C; histone H1, catenin delta-1, serine/ threonine-protein kinase 4, and ADP-ribosylation factor-like protein 2 were increased by VEGF-C. VEGFR3 antagonists (Cpd. 1250 and VEGFR3/Fc) reversed VEGF-C-induced increases in CARP-1 expression, BrdU-positive cell, cell population in apoptotic phase. Cpd. 1250 inhibited cell proliferation and also increased pAkt and Ebp-1 to maintain cell survival. Both proteomic and biochemical results suggest that high concentrations of VEGF-C accelerated the progression of cell cycle from G0 to G1/S through a CARP-1/Rb-mediated pathways, histone-mediated chromatin remodeling. Unlike VEGFR3/Fc, Cpd. 1250 was a multitarget antagonist that inhibited cell proliferation through a VEGFR3-dependnet pathway and increased phosphorylation of Akt and expression of Ebp-1 to maintain cell survival through a VEGFR3-independent pathway in A549 cells. In addition, VEGFR3 antagonists (Cpd. 1250 and VEGFR3/Fc) may be a good current therapy to inhibit malignant cancer proliferation and metastasis at local sites with no cytotoxicity.
1. de Vries JI, Visser GH, Prechtl HF. The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 1982;7(4):301-22.
2. DiFiore JW, Wilson JM. Lung development. Semin Pediatr Surg 1994;3(4):221-32.
3. Shannon JM, Hyatt BA. Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 2004;66:625-45.
4. Jeffrey PK. The development of large and small airways. Am J Respir Crit Care Med 1998;157(5 Pt 2):S174-80.
5. Massaro D, Massaro GD. Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am J Physiol 1986;251(2 Pt 2):R218-24.
6. Blanco LN, Massaro D, Massaro GD. Alveolar size, number, and surface area: developmentally dependent response to 13% O2. Am J Physiol 1991;261(6 Pt 1):L370-7.
7. Blanco LN, Massaro GD, Massaro D. Alveolar dimensions and number: developmental and hormonal regulation. Am J Physiol 1989;257(4 Pt 1):L240-7.
8. Le Cras TD, Kim DH, Gebb S, et al. Abnormal lung growth and the development of pulmonary hypertension in the Fawn-Hooded rat. Am J Physiol 1999;277(4 Pt 1):L709-18.
9. Massaro GD, Massaro D. Formation of pulmonary alveoli and gas-exchange surface area: quantitation and regulation. Annu Rev Physiol 1996;58:73-92.
10. Massaro GD, Olivier J, Massaro D. Brief perinatal hypoxia impairs postnatal development of the bronchiolar epithelium. Am J Physiol 1989;257(2 Pt 1):L80-5.
11. Massaro GD, Olivier J, Massaro D. Short-term perinatal 10% O2 alters postnatal development of lung alveoli. Am J Physiol 1989;257(4 Pt 1):L221-5.
12. Cherukupalli K, Larson JE, Puterman M, Sekhon HS, Thurlbeck WM. Comparative biochemistry of gestational and postnatal lung growth and development in the rat and human. Pediatr Pulmonol 1997;24(1):12-21.
13. Zeltner TB, Burri PH. The postnatal development and growth of the human lung. II. Morphology. Respir Physiol 1987;67(3):269-82.
14. Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH. The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol 1987;67(3):247-67.
15. Risau W. Mechanisms of angiogenesis. Nature 1997;386(6626):671-4.
16. Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM. Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 1999;20(1):14-23.
17. Babaei S, Teichert-Kuliszewska K, Monge JC, Mohamed F, Bendeck MP, Stewart DJ. Role of nitric oxide in the angiogenic response in vitro to basic fibroblast growth factor. Circ Res 1998;82(9):1007-15.
18. Beck L, Jr., D'Amore PA. Vascular development: cellular and molecular regulation. FASEB J 1997;11(5):365-73.
19. Folkman J. Seminars in Medicine of the Beth Israel Hospital, Boston. Clinical applications of research on angiogenesis. N Engl J Med 1995;333(26):1757-63.
20. Morbidelli L, Chang CH, Douglas JG, Granger HJ, Ledda F, Ziche M. Nitric oxide mediates mitogenic effect of VEGF on coronary venular endothelium. Am J Physiol 1996;270(1 Pt 2):H411-5.
21. Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 1999;13(1):9-22.
22. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC. Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Invest 1997;100(12):3131-9.
23. Itakura J, Ishiwata T, Shen B, Kornmann M, Korc M. Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int J Cancer 2000;85(1):27-34.
24. Boocock CA, Charnock-Jones DS, Sharkey AM, et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 1995;87(7):506-16.
25. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992;13(1):18-32.
26. Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol 1994;55(3):410-22.
27. Verheul HM, Hoekman K, Luykx-de Bakker S, et al. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997;3(12 Pt 1):2187-90.
28. Frank S, Hubner G, Breier G, Longaker MT, Greenhalgh DG, Werner S. Regulation of vascular endothelial growth factor expression in cultured keratinocytes. Implications for normal and impaired wound healing. J Biol Chem 1995;270(21):12607-13.
29. Iijima K, Yoshikawa N, Connolly DT, Nakamura H. Human mesangial cells and peripheral blood mononuclear cells produce vascular permeability factor. Kidney Int 1993;44(5):959-66.
30. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K. The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 2006;63(5):601-15.
31. Abedi H, Zachary I. Vascular endothelial growth factor stimulates tyrosine phosphorylation and recruitment to new focal adhesions of focal adhesion kinase and paxillin in endothelial cells. J Biol Chem 1997;272(24):15442-51.
32. Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18(1):4-25.
33. Kerbel RS, Kamen BA. The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 2004;4(6):423-36.
34. Zhang L, Hung MC. Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene 1996;12(3):571-6.
35. Zhang L, Lau YK, Xi L, et al. Tyrosine kinase inhibitors, emodin and its derivative repress HER-2/neu-induced cellular transformation and metastasis-associated properties. Oncogene 1998;16(22):2855-63.
36. Zhang L, Lau YK, Xia W, Hortobagyi GN, Hung MC. Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res 1999;5(2):343-53.
37. Kumar A, Dhawan S, Aggarwal BB. Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNF-induced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 1998;17(7):913-8.
38. Drabkin JHAaDL. Spectrophotometric constants for common hemoglobin derivatives in human, dog, and rabbit blood. J Biol Chem 1932;98(2):719.
39. Jakkula M, Le Cras TD, Gebb S, et al. Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 2000;279(3):L600-7.
40. Schafer KA. The cell cycle: a review. Vet Pathol 1998;35(6):461-78.
41. Bonenfant D, Towbin H, Coulot M, Schindler P, Mueller DR, van Oostrum J. Analysis of dynamic changes in post-translational modifications of human histones during cell cycle by mass spectrometry. Mol Cell Proteomics 2007;6(11):1917-32.
42. Rusan NM, Peifer M. A role for a novel centrosome cycle in asymmetric cell division. J Cell Biol 2007;177(1):13-20.
43. Ceballos E, Munoz-Alonso MJ, Berwanger B, et al. Inhibitory effect of c-Myc on p53-induced apoptosis in leukemia cells. Microarray analysis reveals defective induction of p53 target genes and upregulation of chaperone genes. Oncogene 2005;24(28):4559-71.
44. Freytag SO. Enforced expression of the c-myc oncogene inhibits cell differentiation by precluding entry into a distinct predifferentiation state in G0/G1. Mol Cell Biol 1988;8(4):1614-24.
45. Mauleon I, Lombard MN, Munoz-Alonso MJ, Canelles M, Leon J. Kinetics of myc-max-mad gene expression during hepatocyte proliferation in vivo: Differential regulation of mad family and stress-mediated induction of c-myc. Mol Carcinog 2004;39(2):85-90.
46. Munoz-Alonso MJ, Acosta JC, Richard C, Delgado MD, Sedivy J, Leon J. p21Cip1 and p27Kip1 induce distinct cell cycle effects and differentiation programs in myeloid leukemia cells. J Biol Chem 2005;280(18):18120-9.
47. Wu S, Cetinkaya C, Munoz-Alonso MJ, et al. Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 2003;22(3):351-60.
48. Kaiser BK, Zimmerman ZA, Charbonneau H, Jackson PK. Disruption of centrosome structure, chromosome segregation, and cytokinesis by misexpression of human Cdc14A phosphatase. Mol Biol Cell 2002;13(7):2289-300.
49. Azimzadeh J, Bornens M. Structure and duplication of the centrosome. J Cell Sci 2007;120(Pt 13):2139-42.
50. Ou Y, Rattner JB. The centrosome in higher organisms: structure, composition, and duplication. Int Rev Cytol 2004;238:119-82.
51. Seong YS, Kamijo K, Lee JS, et al. A spindle checkpoint arrest and a cytokinesis failure by the dominant-negative polo-box domain of Plk1 in U-2 OS cells. J Biol Chem 2002;277(35):32282-93.
52. Comin-Anduix B, Agell N, Bachs O, Ovadi J, Cascante M. A new bis-indole, KARs, induces selective M arrest with specific spindle aberration in neuroblastoma cell line SH-SY5Y. Mol Pharmacol 2001;60(6):1235-42.
53. Wu ZZ, Chien CM, Yang SH, et al. Induction of G2/M phase arrest and apoptosis by a novel enediyne derivative, THDA, in chronic myeloid leukemia (K562) cells. Mol Cell Biochem 2006;292(1-2):99-105.
54. Bohnsack BL, Hirschi KK. Nutrient regulation of cell cycle progression. Annu Rev Nutr 2004;24:433-53.
55. Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4. Genes Dev 1993;7(3):331-42.
56. Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol Cell Biol 1998;18(2):753-61.
57. Mittnacht S. Control of pRB phosphorylation. Curr Opin Genet Dev 1998;8(1):21-7.
58. Fagin JA. Tumor suppressor genes in human thyroid neoplasms: p53 mutations are associated undifferentiated thyroid cancers. J Endocrinol Invest 1995;18(2):140-2.
59. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science 1991;253(5015):49-53.
60. Kim KH, Kim YS. Analysis of p53 tumor suppressor gene mutations and human papillomavirus infection in human bladder cancers. Yonsei Med J 1995;36(4):322-31.
61. Kitagawa Y, Wong F, Lo P, et al. Overexpression of Bcl-2 and mutations in p53 and K-ras in resected human non-small cell lung cancers. Am J Respir Cell Mol Biol 1996;15(1):45-54.
62. Moles JP, Moyret C, Guillot B, et al. p53 gene mutations in human epithelial skin cancers. Oncogene 1993;8(3):583-8.
63. Naito M, Satake M, Sakai E, et al. Detection of p53 gene mutations in human ovarian and endometrial cancers by polymerase chain reaction-single strand conformation polymorphism analysis. Jpn J Cancer Res 1992;83(10):1030-6.
64. Osborne RJ, Merlo GR, Mitsudomi T, et al. Mutations in the p53 gene in primary human breast cancers. Cancer Res 1991;51(22):6194-8.
65. Wiedenfeld EA, Fernandez-Vina M, Berzofsky JA, Carbone DP. Evidence for selection against human lung cancers bearing p53 missense mutations which occur within the HLA A*0201 peptide consensus motif. Cancer Res 1994;54(5):1175-7.
66. Pellegata NS, Ranzani GN. The significance of p53 mutations in human cancers. Eur J Histochem 1996;40(4):273-82.
67. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res 1991;51(23 Pt 1):6304-11.
68. Yokota J. Tumor progression and metastasis. Carcinogenesis 2000;21(3):497-503.
69. Hiratsuka S, Nakamura K, Iwai S, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002;2(4):289-300.
70. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M. Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 1998;95(16):9349-54.
71. Papoutsi M, Siemeister G, Weindel K, et al. Active interaction of human A375 melanoma cells with the lymphatics in vivo. Histochem Cell Biol 2000;114(5):373-85.
72. Krishnan J, Kirkin V, Steffen A, et al. Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)-C and VEGF-D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 2003;63(3):713-22.
73. Crnic I, Strittmatter K, Cavallaro U, et al. Loss of neural cell adhesion molecule induces tumor metastasis by up-regulating lymphangiogenesis. Cancer Res 2004;64(23):8630-8.
74. He Y, Kozaki K, Karpanen T, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 2002;94(11):819-25.
75. Shimizu K, Kubo H, Yamaguchi K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci 2004;95(4):328-33.
76. Weir HK, Thun MJ, Hankey BF, et al. Annual report to the nation on the status of cancer, 1975-2000, featuring the uses of surveillance data for cancer prevention and control. J Natl Cancer Inst 2003;95(17):1276-99.
77. Department of Health EY, Republic of china (Taiwan). Statistics of cause of death, 2006. 2007.
78. Fry WA, Phillips JL, Menck HR. Ten-year survey of lung cancer treatment and survival in hospitals in the United States: a national cancer data base report. Cancer 1999;86(9):1867-76.
79. Jemal A, Tiwari RC, Murray T, et al. Cancer statistics, 2004. CA Cancer J Clin 2004;54(1):8-29.
80. Delbaldo C, Michiels, S., Syz, N., Soria, J. C., Le Chevalier, T., Pignon, J.P. Benefits of adding a drug to a singleagent or a 2-agent chemotherapy regimen in advanced non-small-cell lung cancer: a meta-analysis. JAMA 2004.;292:470-84.
81. Li D, Ji H, Zaghlul S, et al. Therapeutic anti-EGFR antibody 806 generates responses in murine de novo EGFR mutant-dependent lung carcinomas. J Clin Invest 2007;117(2):346-52.
82. Holash J, Davis S, Papadopoulos N, et al. VEGF-Trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci U S A 2002;99(17):11393-8.
83. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med 2006;355(24):2542-50.
84. Cai J, Jiang WG, Ahmed A, Boulton M. Vascular endothelial growth factor-induced endothelial cell proliferation is regulated by interaction between VEGFR-2, SH-PTP1 and eNOS. Microvasc Res 2006;71(1):20-31.
85. Liu ZJ, Xiao M, Balint K, et al. Inhibition of endothelial cell proliferation by Notch1 signaling is mediated by repressing MAPK and PI3K/Akt pathways and requires MAML1. FASEB J 2006;20(7):1009-11.
86. Lamalice L, Houle F, Jourdan G, Huot J. Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene 2004;23(2):434-45.
87. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3'-kinase/Akt signal transduction pathway. Requirement for Flk-1/KDR activation. J Biol Chem 1998;273(46):30336-43.
88. Landgren E, Schiller P, Cao Y, Claesson-Welsh L. Placenta growth factor stimulates MAP kinase and mitogenicity but not phospholipase C-gamma and migration of endothelial cells expressing Flt 1. Oncogene 1998;16(3):359-67.
89. Seetharam L, Gotoh N, Maru Y, Neufeld G, Yamaguchi S, Shibuya M. A unique signal transduction from FLT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995;10(1):135-47.
90. Barleon B, Sozzani S, Zhou D, Weich HA, Mantovani A, Marme D. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996;87(8):3336-43.
91. Clauss M, Weich H, Breier G, et al. The vascular endothelial growth factor receptor Flt-1 mediates biological activities. Implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. J Biol Chem 1996;271(30):17629-34.
92. von Marschall Z, Cramer T, Hocker M, et al. De novo expression of vascular endothelial growth factor in human pancreatic cancer: evidence for an autocrine mitogenic loop. Gastroenterology 2000;119(5):1358-72.
93. Byzova TV, Goldman CK, Pampori N, et al. A mechanism for modulation of cellular responses to VEGF: activation of the integrins. Mol Cell 2000;6(4):851-60.
94. Jeltsch M, Kaipainen A, Joukov V, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997;276(5317):1423-5.
95. Makinen T, Jussila L, Veikkola T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med 2001;7(2):199-205.
96. Veikkola T, Jussila L, Makinen T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001;20(6):1223-31.
97. Wang JF, Zhang X, Groopman JE. Activation of vascular endothelial growth factor receptor-3 and its downstream signaling promote cell survival under oxidative stress. J Biol Chem 2004;279(26):27088-97.
98. Makinen T, Veikkola T, Mustjoki S, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 2001;20(17):4762-73.
99. Su JL, Yang PC, Shih JY, et al. The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 2006;9(3):209-23.
100. Van Trappen PO, Steele D, Lowe DG, et al. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGFR-3, during different stages of cervical carcinogenesis. J Pathol 2003;201(4):544-54.
101. Cao R, Bjorndahl MA, Religa P, et al. PDGF-BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 2004;6(4):333-45.
102. Hirsch J, Hansen KC, Burlingame AL, Matthay MA. Proteomics: current techniques and potential applications to lung disease. Am J Physiol Lung Cell Mol Physiol 2004;287(1):L1-23.
103. Courtney JM, Dunbar KE, McDowell A, et al. Clinical outcome of Burkholderia cepacia complex infection in cystic fibrosis adults. J Cyst Fibros 2004;3(2):93-8.
104. Diederichs S, Bulk E, Steffen B, et al. S100 family members and trypsinogens are predictors of distant metastasis and survival in early-stage non-small cell lung cancer. Cancer Res 2004;64(16):5564-9.
105. Higuchi Y, Linn S. Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. J Biol Chem 1995;270(14):7950-6.
106. Brody TM, Bain JA. Effect of barbiturates on oxidative phosphorylation. Proc Soc Exp Biol Med 1951;77(1):50-3.
107. Cox B, Emili A. Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics. Nat Protoc 2006;1(4):1872-8.
108. Vitorino R, Ferreira R, Neuparth M, et al. Subcellular proteomics of mice gastrocnemius and soleus muscles. Anal Biochem 2007;366(2):156-69.
109. Guillemin I, Becker M, Ociepka K, Friauf E, Nothwang HG. A subcellular prefractionation protocol for minute amounts of mammalian cell cultures and tissue. Proteomics 2005;5(1):35-45.
110. Tang MJ, Hu JJ, Lin HH, Chiu WT, Jiang ST. Collagen gel overlay induces apoptosis of polarized cells in cultures: disoriented cell death. Am J Physiol 1998;275(4 Pt 1):C921-31.
111. Catts VS, Catts SV, McGrath JJ, et al. Apoptosis and schizophrenia: a pilot study based on dermal fibroblast cell lines. Schizophr Res 2006;84(1):20-8.
112. Ishikawa K, Koshikawa N, Takenaga K, Nakada K, Hayashi J. Reversible regulation of metastasis by ROS-generating mtDNA mutations. Mitochondrion 2008;8(4):339-44.
113. Douglas WH, Kaighn ME. Clonal isolation of differentiated rat lung cells. In Vitro 1974;10(3-4):230-7.
114. Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood 2002;99(6):2179-84.
115. Bose SK, Sengupta TK, Bandyopadhyay S, Spicer EK. Identification of Ebp1 as a component of cytoplasmic bcl-2 mRNP (messenger ribonucleoprotein particle) complexes. Biochem J 2006;396(1):99-107.
116. Yoo JY, Wang XW, Rishi AK, et al. Interaction of the PA2G4 (EBP1) protein with ErbB-3 and regulation of this binding by heregulin. Br J Cancer 2000;82(3):683-90.
117. Liu Z, Ahn JY, Liu X, Ye K. Ebp1 isoforms distinctively regulate cell survival and differentiation. Proc Natl Acad Sci U S A 2006;103(29):10917-22.
118. Alitalo K, Carmeliet P. Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 2002;1(3):219-27.
119. Plate K. From angiogenesis to lymphangiogenesis. Nat Med 2001;7(2):151-2.
120. Downey C, Alwan K, Thamilselvan V, et al. Pressure stimulates breast cancer cell adhesion independently of cell cycle and apoptosis regulatory protein (CARP)-1 regulation of focal adhesion kinase. Am J Surg 2006;192(5):631-5.
121. Nakano T, Matsushima-Hibiya Y, Yamamoto M, et al. Purification and molecular cloning of a DNA ADP-ribosylating protein, CARP-1, from the edible clam Meretrix lamarckii. Proc Natl Acad Sci U S A 2006;103(37):13652-7.
122. Beghin A, Honore S, Messana C, et al. ADP ribosylation factor like 2 (Arl2) protein influences microtubule dynamics in breast cancer cells. Exp Cell Res 2007;313(3):473-85.
123. Bhamidipati A, Lewis SA, Cowan NJ. ADP ribosylation factor-like protein 2 (Arl2) regulates the interaction of tubulin-folding cofactor D with native tubulin. J Cell Biol 2000;149(5):1087-96.
124. Alexandrow MG, Hamlin JL. Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol 2005;168(6):875-86.
125. Kuo MH, Zhou J, Jambeck P, Churchill ME, Allis CD. Histone acetyltransferase activity of yeast Gcn5p is required for the activation of target genes in vivo. Genes Dev 1998;12(5):627-39.
126. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001;70:81-120.
127. Kadosh D, Struhl K. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev 1998;12(6):797-805.
128. Altheim BA, Schultz MC. Histone modification governs the cell cycle regulation of a replication-independent chromatin assembly pathway in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1999;96(4):1345-50.
129. He H, Lehming N. Global effects of histone modifications. Brief Funct Genomic Proteomic 2003;2(3):234-43.
130. Korolev N, Nordenskiold L. H4 histone tail mediated DNA-DNA interaction and effects on DNA structure, flexibility, and counterion binding: a molecular dynamics study. Biopolymers 2007;86(5-6):409-23.
131. Majumdar AP, Du J, Yu Y, et al. Cell cycle and apoptosis regulatory protein-1: a novel regulator of apoptosis in the colonic mucosa during aging. Am J Physiol Gastrointest Liver Physiol 2007;293(6):G1215-22.